Nav: Home

Inhalation therapy shows promise against pulmonary fibrosis in mice, rats

February 28, 2020

A new study from North Carolina State University shows that lung stem cell secretions - specifically exosomes and secretomes - delivered via nebulizer, can help repair lung injuries due to multiple types of pulmonary fibrosis in mice and rats. The work could lead to more effective, less invasive treatment for human pulmonary fibrosis sufferers.

Pulmonary fibrosis is a fatal disease that thickens and scars healthy lung tissue, creating inflammation and replacing the lining of the lung cells with fibrotic tissue. In the last five years, Ke Cheng and his lab developed spheroid-produced lung stem cells (LSCs) as a potential therapeutic for pulmonary fibrosis. Cheng is the Randall B. Terry Jr. Distinguished Professor in Regenerative Medicine at NC State, a professor in the NC State/UNC-Chapel Hill Joint Department of Biomedical Engineering, and corresponding author of the research.

"The mixture of cells in LSCs recreates the stem cells' natural microenvironment - known as the stem cell niche - where cells secrete exosomes to communicate with each other just as they would inside your body," Cheng says. "LSCs secrete many beneficial proteins and growth factors known collectively as 'secretome' - exosomes and soluble proteins which can reproduce the regenerative microenvironment of the cells themselves. In this work we took it one step further and tested the secretome and exosomes from our spheroid-produced stem cells against two models of pulmonary fibrosis."

Cheng and his colleagues tested lung spheroid cell secretome (LSC-Sec) and lung spheroid cell exosomes (LSC-Exo) against commonly used mesenchymal stem cells (MSCs) in mouse and rat models of chemically induced and silica- or particle-induced pulmonary fibrosis. The stem cell-derived therapeutics were delivered through a "stem cell sauna," a nebulizer that allowed the therapeutic proteins, small molecules and exosomes to be inhaled directly into the lungs.

In the mouse model of chemically induced fibrosis, the researchers found that although inhalation treatment with either LSC-Sec or MSC-Sec led to improvements compared to the saline-treated control, LSC-Sec treatment resulted in nearly 50% reduction of fibrosis compared to 32.4% reduction with MSC-Sec treatment.

In the mouse model of silica-induced pulmonary fibrosis, LSC-Sec treatment resulted in 26% reduction of fibrosis compared to 16.9% reduction with MSC-Sec treatment.

The researchers also looked at rat models of both types of pulmonary fibrosis, and tested both LSC-exosome and LSC-Sec treatments against MSC-Exo with similar results. Additionally, they found that while LSC-exosome inhalation treatment alone can elicit a therapeutic effect similar to LSC-Sec treatment, the full secretome was still the most therapeutic.

"This work shows that lung spheroid cell secretome and exosomes are more effective than their mesenchymal stem cells counterparts in decreasing fibrotic tissue and inflammation in damaged lung tissue," Cheng says. "Hopefully we are taking our first steps toward an efficient, non-invasive and cost-effective way to repair damaged lungs.

"Given the therapy's effectiveness in multiple models of lung fibrosis and inflammation, we are planning to expand the test into more pulmonary diseases, including chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and pulmonary hypertension (PH)."

"The finding that products released by lung stem cells can be just as efficacious, if not more so, than the stem cells themselves in treating pulmonary fibrosis can be a major finding that can have implications in many other diseases where stem cell therapy is being developed," says Kenneth Adler, Alumni Distinguished Graduate Professor at NC State and a co-author of the paper.
-end-
The work appears in Nature Communications and was supported by the National Institutes of Health and the American Heart Association. Post-doctoral research scholar Uyen Dinh is first author.

Note to authors: An abstract follows.

"Inhalation of Lung Spheroid Cell Secretome and Exosomes Promotes Lung Repair in Pulmonary Fibrosis"

DOI: 10.1038/s41467-020-14344-7

Authors: Phuong-Uyen C. Dinh, Dipti Paudel, Hayden Brochu, Kristen D. Popowski, M. Cyndell Gracieux, Jhon Cores, Ke Huang, M. Taylor Hensley, Erin Harrell, Adam C. Vandergriff, Arianna K. George, Raina T. Barrio, Shiqi Hu, Tyler A. Allen, Kevin Blackburn, Michael B. Goshe, Xinxia Peng, Lauren V. Schnabel, Kenneth B. Adler, Ke Cheng, North Carolina State University; Thomas G. Caranasos, Leonard J. Lobo, University of North Carolina at Chapel Hill

Published: Online in Nature Communications

Abstract: Idiopathic pulmonary fibrosis (IPF) is a fatal and incurable form of interstitial lung disease in which persistent injury results in scar tissue formation. As fibrosis thickens, the lung tissue loses the ability to facilitate gas exchange and provide cells with needed oxygen. Currently, IPF has few treatment options and no effective therapies, aside from lung transplant. Here we present a series of studies utilizing lung spheroid cell-secretome (LSC-Sec) and exosomes (LSC-Exo) by inhalation to treat different rodent models of lung injury and fibrosis. Analysis reveal LSC-Sec and LSC-Exo treatments could attenuate and resolve bleomycin- and silica-induced fibrosis by reestablishing normal alveolar structure and decreasing collagen accumulation and myofibroblast proliferation. Additionally, LSC-Sec and LSC-Exo exhibit superior therapeutic benefits than their counterparts derived from mesenchymal stem cells in some measures. We show that an inhalation treatment of cell secretome and exosome exhibited therapeutic potential for lung regeneration in two experimental models of pulmonary fibrosis.

North Carolina State University

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.