Nav: Home

Actin filaments control the shape of the cell structure that divides plant cells

February 28, 2020

Using microscopic video analysis, a research group from Kumamoto University, Japan has provided deeper insight into the mechanics of plant cell division. The video reveals that the shape of phragmoplasts--cell structures that create the partition between two dividing plant cells--is controlled by actin filaments.

The discovery was made while the researchers were analyzing phragmoplast behavior during cytokinesis: the point in cell division where daughter cells physically separate. They noticed a change in the phragmoplast shape that could only be seen for about 30 seconds in the video. Even though plant cell division mechanisms have been thoroughly studied, the role that actin filaments play in the process appears to have been previously overlooked.

During plant cell division, a partition called a cell plate appears between two chromosomes and expands to divide the cell into two. This cell plate is created by the phragmoplast, which appears only during cell division and contains microtubules and actin filaments. Microtubules were known to play a major role in the formation of the phragmoplast, as destroying them with chemicals results in non-formation of the cell plate. On the other hand, the role of actin filaments was not well understood, since their destruction does not cause any noticeable change in phragmoplasts or cell plates.

Using microscopic video analysis to examine the changes that occur in the phragmoplast and cell plate when actin filaments are disrupted, Dr. Takumi Higaki and graduate student Mr. Keisho Maeda noticed that the phragmoplast became abnormally wide immediately after it was created. (Normal phragmoplasts are constricted toward the center of the cell.) Interestingly, this change was observed for as little as 30 seconds immediately its creation, after which the effects of the disrupted actin filaments became less apparent. Furthermore, the shape of the cell plate changed only when the shape of the phragmoplast changed. These findings indicate that actin filaments are involved in the formation of cell plates through control of new phragmoplast development.

Additionally, the researchers examined the behavior of several proteins thought to be carried by phragmoplasts to cell plates and are responsible for phragmoplast expansion. Some proteins were found to accelerate the timing of transport to the cell plate when actin filaments are disrupted. It is thought that the phragmoplast has two stages, a "childhood" and an "adolescence." Actin filaments are necessary for shaping its childhood, but are not necessary during adolescence. Apparently, cells will eventually divide normally without actin filaments, but it remains to be determined whether the absence of actin filaments does not have an effect on cells after their "adolescence."

"This discovery has shed some light on the role of actin filaments during plant cytokinesis. Actin filaments were found to be present in phragmoplasts about 35 years ago, and a lot of research has been done since then, but there appears to be no report on this phenomenon," said Dr. Higaki. "This is probably because recent time-lapse image analysis technology has improved and is now able to capture subtle differences in a short time; these were very difficult to notice with conventional observation methods. We advocate 'imaging biology' that utilizes image analysis technology in biology, and we hope to keep finding new phenomena with a similar research approach."
-end-
This research was posted online in Plant and Cell Physiology on 7 February 2020.

[Source]

Maeda, K., Sasabe, M., Hanamata, S., Machida, Y., Hasezawa, S., & Higaki, T. (2020). Actin Filament Disruption Alters Phragmoplast Microtubule Dynamics during the Initial Phase of Plant Cytokinesis. Plant and Cell Physiology. doi:10.1093/pcp/pcaa003

Kumamoto University

Related Cell Division Articles:

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.
Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.
Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.
Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.
Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.
Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.
Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.
Exhaustive analysis reveals cell division's inner timing mechanisms
After exploring every possible correlation, researchers shed new light on a long-standing question about what triggers cell division.
More Cell Division News and Cell Division Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.