Nav: Home

Joslin study reveals how a specific fat type can protect against weight gain and diabetes

March 01, 2007

BOSTON - March 1, 2007 -- A new study from Joslin Diabetes Center may shed light on why some people can eat excessive amounts of food and not gain weight or develop type 2 diabetes, while others are more likely to develop obesity and this most common form of diabetes on any diet. The study, which used two strains of mice with differing tendencies to gain weight and develop diabetes on a high-fat diet, identified genetic and cellular mechanisms that may prevent certain mice on a calorie-dense diet from gaining weight and developing metabolic syndrome.

"Although this study was done with mice, it points out new mechanisms that may underlie the ability of genetically different mice -- and perhaps genetically different people -- to not gain much weight on high caloric diets," said lead investigator C. Ronald Kahn, M.D., an internationally recognized researcher who is Head of Joslin's Section on Obesity and Hormone Action and the Mary K. Iacocca Professor of Medicine at Harvard Medical School.

The study, published in the online edition of the Proceedings of the National Academy of Sciences on Feb. 5-9, builds upon years of research at Joslin and elsewhere on energy metabolism and the genetics of fat cells.

It has long been known that people significantly differ in their tendency to gain weight and develop metabolic syndrome, a group of conditions including hypertension, abdominal obesity, high triglycerides and glucose intolerance that can lead to type 2 diabetes. More than 60 million Americans either are obese or have metabolic syndrome, putting them at risk for type 2 diabetes and its frequent complications, including cardiovascular disease and other serious conditions. Currently 21 million Americans have diabetes and approximately one-third of them do not even know they have the disease. Formerly known as adult-onset diabetes, type 2 diabetes is occurring more frequently in young adults and even children.

Previous studies at Joslin and elsewhere have uncovered the differing functions of the two types of body fat-white and brown. White fat, the more familiar form of fat that accumulates in the abdomen, thighs, buttocks and under the skin, stores energy for future needs, whereas brown fat or brown adipose tissue (BAT) burns energy and generates heat.

White fat, which is packed with large lipid droplets, is deposited under the skin, around internal organs and as visceral fat - one of the most harmful forms of abdominal fat. Brown fat, on the other hand, contains small lipid droplets tucked behind tiny energy factories called mitochondria. These cells are most prevalent in the necks of infants and between the shoulder blades in mice to help their bodies generate heat, but tend to mostly disappear by adulthood. A 2005 Joslin study by Dr. Kahn and his colleagues discovered genes that control the creation of the precursor cells that give rise to brown fat cells. This latest study shows that brown fat may not disappear in all adult animals and that little collections of brown fat may account for why some mice are protected from obesity and diabetes and others are not.

This study began by exploring differences in basal energy expenditure (the amount of energy required to maintain the body's normal metabolic activity, such as respiration and maintenance of body temperature) and its role in the development of obesity and metabolic syndrome in two different genetic strains of mice: the B6 mouse and the 129 mouse. The B6 mouse is one of the most commonly used strains in metabolic research and an established model for diet-induced obesity.

When placed on a high-fat diet, the B6 mouse develops severe obesity, high blood glucose and insulin resistance with extremely high insulin levels. By contrast, the 129 mouse gains on average 30 to 50 percent less weight on either a high-or low-fat diet than the B6 mouse and has been considered resistant to dietary induced obesity and glucose intolerance. In the new study, Dr. Kahn and his colleagues showed that this difference is due to the higher basal energy expenditure in the 129 mouse. When searching for the source of the energy expenditure, the researchers found unexpected clusters of brown fat cells stuck between bundles of muscle fibers in the leg of the mouse. In this case, the 129 mouse had over 100 times more brown fat in muscle than the B6 mouse.

"This site of brown fat was previously unrecognized and is certainly one of the reasons for the differences in energy expenditure between strains of mice. Now we need to see if the same is true for humans and if this could account for why some people gain weight easily and others seem to be protected against weight gain and metabolic syndrome that can lead to type 2 diabetes," Dr. Kahn said. "Finding drugs that stimulate the amount or activity of this brown fat could also lead to a new therapy for obesity and prevention of diabetes."
-end-
For more information, contact:

Jenny Eriksen, Joslin Communications, (617) 732-2415 jenny.eriksen@joslin.harvard.edu

Other researchers participating in the study include: lead author Katrine Almind, Ph.D., formerly of Joslin and now of Novo Nordisk, Denmark; Monia Manieri and Saverio Cinti, M.D., Institute of Normal Human Morphology-Anatomy, University of Ancona, Italy; and William I. Sivitz, Ph.D., Department of Internal Medicine, University of Iowa, Iowa City.

About Joslin Diabetes Center

Joslin Diabetes Center, dedicated to conquering diabetes in all of its forms, is the global leader in diabetes research, care and education. Founded in 1898, Joslin is an independent nonprofit institution affiliated with Harvard Medical School. Joslin research is a team of more than 300 people at the forefront of discovery aimed at preventing and curing diabetes. Joslin Clinic, affiliated with Beth Israel Deaconess Medical Center in Boston, the nationwide network of Joslin Affiliated Programs, and the hundreds of Joslin educational programs offered each year for clinicians, researchers and patients, enable Joslin to develop, implement and share innovations that immeasurably improve the lives of people with diabetes. As a nonprofit, Joslin benefits from the generosity of donors in advancing its mission. For more information on Joslin, call 1-800-JOSLIN-1 or visit www.joslin.org.

Joslin Diabetes Center

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.