Tumors deliberately create conditions that inhibit body's best immune response

March 01, 2013

New research in the Journal of Clinical Investigation reveals that tumours in melanoma patients deliberately create conditions that knock out the body's 'premier' immune defence and instead attract a weaker immune response unable to kill off the tumour's cancerous cells.

The study also highlights a potential antibody biomarker that could help predict prognosis and identify which patients are most likely to respond to specific treatments.

The research, led by Dr Sophia Karagiannis and Professor Frank Nestle at King's College London, UK, was funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London.

Karagiannis and colleagues have previously shown that, in patients with melanoma, antibodies are produced that can attack tumour cells. Despite this, the patient's immune system is often ineffective in preventing the cancer from progressing.

The body's B cells (part of the immune system) produce a total of 5 different antibody classes. The most common, IgG, comprises 4 types (or subclasses) of which the researchers have shown that IgG1 subclass antibodies are the most effective at activating immune cells, while antibodies of the IgG4 subclass are thought to be the least efficient.

In this new research, the authors analysed tumour tissue and blood donated by 80 patients from the melanoma clinic of St John's Institute of Dermatology at Guy's and St Thomas', as well as tissue and blood from healthy volunteers.

By analysing the lesions found in melanoma, the authors show that melanoma tumours not only create conditions that attract IgG4, the weakest possible response, but also that IgG4 antibodies interfere with the action of any IgG1 antibodies circulating. "We were able to mimic the conditions created by melanoma tumours and showed that B cells can be polarised to produce IgG4 antibodies in the presence of cancer cells," says Dr Karagiannis. In the presence of healthy cells, the body's immune response functions normally, and IgG1 are the main antibodies circulating.

To better understand the functional implications of IgG4 subclass antibodies in cancer, the authors engineered these two antibodies (IgG1, IgG4) against a tumour antigen and demonstrated that unlike IgG1, the IgG4 antibody was ineffective in triggering immune cells to kill cancer cells. Importantly, IgG4 also blocked the tumour cell killing actions of IgG1, thus preventing this antibody from activating immune cells to destroy tumours.

Additionally, using samples from 33 patients, the authors found that patients with higher IgG4 levels in their blood are more likely to have a less favourable prognosis compared to those whose blood levels of IgG4 are closer to normal levels. This suggests that IgG4 may help assist in predicting disease progression.

"This work bears important implications for future therapies since not only are IgG4 antibodies ineffective in activating immune cells to kill tumours but they also work by blocking antibodies from killing tumour cells," says Dr Karagiannis. "The latter means that IgG4 not only prevents the patient's more powerful antibodies from eradicating cancer, but could also explain why treatments may be hindered by those native IgG4 antibodies found in patients, making therapeutic antibodies less effective."

"Now, with the help of our NIHR Biomedical Research Centre, more work needs to be done on developing IgG4 as a potential clinical and prognostic biomarker which can improve patient care by informing clinical decisions and helping to identify patients most likely to respond to treatments," concludes Professor Nestle. Therefore, these findings are expected to inform the design and help improve the potency and efficacy of future therapies for cancer. "This study can also inform the rational design of novel strategies to counteract IgG4 actions."

The authors are now broadening the study by examining larger groups of patients. The team is analysing blood and sera from patients with melanoma and from patients with other cancers to determine whether the presence of IgG4 could inform patient outcomes or predict responses to therapy. They are also analysing the mechanisms of IgG4 blockade of new and existing therapeutic antibody candidates, and developing new antibody candidates which may be less prone to IgG4 blockade.
-end-
To interview Dr Sophia Karagiannis, please contact Marianne Slegers, King's College London, UK. T) +44 (0)207 848 3840 E) Marianne.slegers@kcl.ac.uk

A copy of the full study is attached to the email in this release.

Notes to editors:


Note to editors: The study additionally benefited from support from Cancer Research UK (CR UK) and CR UK New Agents Committee; and by the CR UK//NIHR Experimental Cancer Medicine Centre.

King's College London


King's College London is one of the top 30 universities in the world (2011/12 QS World University Rankings), and the fourth oldest in England. A research-led university based in the heart of London, King's has more than 25,000 students (of whom more than 10,000 are graduate students) from nearly 140 countries, and some 6,500 employees. King's is in the second phase of a £1 billion redevelopment programme which is transforming its estate.

King's has an outstanding reputation for providing world-class teaching and cutting-edge research. In the 2008 Research Assessment Exercise for British universities, 23 departments were ranked in the top quartile of British universities; over half of our academic staff work in departments that are in the top 10 per cent in the UK in their field and can thus be classed as world leading. The College is in the top seven UK universities for research earnings and has an overall annual income of nearly £450 million.

King's has a particularly distinguished reputation in the humanities, law, the sciences (including a wide range of health areas such as psychiatry, medicine, nursing and dentistry) and social sciences including international affairs. It has played a major role in many of the advances that have shaped modern life, such as the discovery of the structure of DNA and research that led to the development of radio, television, mobile phones and radar. It is the largest centre for the education of healthcare

King's College London

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.