# Short algorithm, long-range consequences

March 01, 2013CAMBRIDGE, MA -- In the last decade, theoretical computer science has seen remarkable progress on the problem of solving graph Laplacians -- the esoteric name for a calculation with hordes of familiar applications in scheduling, image processing, online product recommendation, network analysis, and scientific computing, to name just a few. Only in 2004 did researchers first propose an algorithm that solved graph Laplacians in "nearly linear time," meaning that the algorithm's running time didn't increase exponentially with the size of the problem.

At this year's ACM Symposium on the Theory of Computing, MIT researchers will present a new algorithm for solving graph Laplacians that is not only faster than its predecessors, but also drastically simpler. "The 2004 paper required fundamental innovations in multiple branches of mathematics and computer science, but it ended up being split into three papers that I think were 130 pages in aggregate," says Jonathan Kelner, an associate professor of applied mathematics at MIT who led the new research. "We were able to replace it with something that would fit on a blackboard."

The MIT researchers -- Kelner; Lorenzo Orecchia, an instructor in applied mathematics; and Kelner's students Aaron Sidford and Zeyuan Zhu -- believe that the simplicity of their algorithm should make it both faster and easier to implement in software than its predecessors. But just as important is the simplicity of their conceptual analysis, which, they argue, should make their result much easier to generalize to other contexts.

**Overcoming resistance**

A graph Laplacian is a matrix -- a big grid of numbers -- that describes a graph, a mathematical abstraction common in computer science. A graph is any collection of nodes, usually depicted as circles, and edges, depicted as lines that connect the nodes. In a logistics problem, the nodes might represent tasks to be performed, while in an online recommendation engine, they might represent titles of movies.

In many graphs, the edges are "weighted," meaning that they have different numbers associated with them. Those numbers could represent the cost -- in time, money or energy -- of moving from one step to another in a complex logistical operation, or they could represent the strength of the correlations between the movie preferences of customers of an online video service.

The Laplacian of a graph describes the weights between all the edges, but it can also be interpreted as a series of linear equations. Solving those equations is crucial to many techniques for analyzing graphs.

One intuitive way to think about graph Laplacians is to imagine the graph as a big electrical circuit and the edges as resistors. The weights of the edges describe the resistance of the resistors; solving the Laplacian tells you how much current would flow between any two points in the graph.

Earlier approaches to solving graph Laplacians considered a series of ever-simpler approximations of the graph of interest. Solving the simplest provided a good approximation of the next simplest, which provided a good approximation of the next simplest, and so on. But the rules for constructing the sequence of graphs could get very complex, and proving that the solution of the simplest was a good approximation of the most complex required considerable mathematical ingenuity.

**Looping back**

The MIT researchers' approach is much more straightforward. The first thing they do is find a "spanning tree" for the graph. A tree is a particular kind of graph that has no closed loops. A family tree is a familiar example; there, a loop might mean that someone was both parent and sibling to the same person. A spanning tree of a graph is a tree that touches all of the graph's nodes but dispenses with the edges that create loops. Efficient algorithms for constructing spanning trees are well established.

The spanning tree in hand, the MIT algorithm then adds back just one of the missing edges, creating a loop. A loop means that two nodes are connected by two different paths; on the circuit analogy, the voltage would have to be the same across both paths. So the algorithm sticks in values for current flow that balance the loop. Then it adds back another missing edge and rebalances.

In even a simple graph, values that balance one loop could imbalance another one. But the MIT researchers showed that, remarkably, this simple, repetitive process of adding edges and rebalancing will converge on the solution of the graph Laplacian. Nor did the demonstration of that convergence require sophisticated mathematics: "Once you find the right way of thinking about the problem, everything just falls into place," Kelner explains.

-end-

Written By: Larry Hardesty, MIT News OfficeMassachusetts Institute of Technology

## Related Mathematics Articles from Brightsurf:

A new method for boosting the learning of mathematics

How can mathematics learning in primary school be facilitated? UNIGE has developed an intervention to promote the learning of math in school.

Could mathematics help to better treat cancer?

Impaired information processing may prevent cells from perceiving their environment correctly; they then start acting in an uncontrolled way and this can lead to the development of cancer.

People can see beauty in complex mathematics, study shows

Ordinary people see beauty in complex mathematical arguments in the same way they can appreciate a beautiful landscape painting or a piano sonata.

Improving geothermal HVAC systems with mathematics

Sustainable heating, ventilation, and air conditioning systems, such as those that harness low-enthalpy geothermal energy, are needed to reduce collective energy use and mitigate the continued effects of a warming climate.

How the power of mathematics can help assess lung function

Researchers at the University of Southampton have developed a new computational way of analyzing X-ray images of lungs, which could herald a breakthrough in the diagnosis and assessment of chronic obstructive pulmonary disease (COPD) and other lung diseases.

Mathematics pushes innovation in 4-D printing

New mathematical results will provide a potential breakthrough in the design and the fabrication of the next generation of morphable materials.

More democracy through mathematics

For democratic elections to be fair, voting districts must have similar sizes.

How to color a lizard: From biology to mathematics

Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.

US educators awarded for exemplary teaching in mathematics

Janet Heine Barnett, Caren Diefenderfer, and Tevian Dray were named the 2017 Deborah and Franklin Tepper Haimo Award winners by the Mathematical Association of America (MAA) for their teaching effectiveness and influence beyond their institutions.

Authors of year's best books in mathematics honored

Prizes for the year's best books in mathematics were awarded to Ian Stewart and Tim Chartier by the Mathematical Association of America (MAA) on Jan.

Read More: Mathematics News and Mathematics Current Events

How can mathematics learning in primary school be facilitated? UNIGE has developed an intervention to promote the learning of math in school.

Could mathematics help to better treat cancer?

Impaired information processing may prevent cells from perceiving their environment correctly; they then start acting in an uncontrolled way and this can lead to the development of cancer.

People can see beauty in complex mathematics, study shows

Ordinary people see beauty in complex mathematical arguments in the same way they can appreciate a beautiful landscape painting or a piano sonata.

Improving geothermal HVAC systems with mathematics

Sustainable heating, ventilation, and air conditioning systems, such as those that harness low-enthalpy geothermal energy, are needed to reduce collective energy use and mitigate the continued effects of a warming climate.

How the power of mathematics can help assess lung function

Researchers at the University of Southampton have developed a new computational way of analyzing X-ray images of lungs, which could herald a breakthrough in the diagnosis and assessment of chronic obstructive pulmonary disease (COPD) and other lung diseases.

Mathematics pushes innovation in 4-D printing

New mathematical results will provide a potential breakthrough in the design and the fabrication of the next generation of morphable materials.

More democracy through mathematics

For democratic elections to be fair, voting districts must have similar sizes.

How to color a lizard: From biology to mathematics

Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.

US educators awarded for exemplary teaching in mathematics

Janet Heine Barnett, Caren Diefenderfer, and Tevian Dray were named the 2017 Deborah and Franklin Tepper Haimo Award winners by the Mathematical Association of America (MAA) for their teaching effectiveness and influence beyond their institutions.

Authors of year's best books in mathematics honored

Prizes for the year's best books in mathematics were awarded to Ian Stewart and Tim Chartier by the Mathematical Association of America (MAA) on Jan.

Read More: Mathematics News and Mathematics Current Events

Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.