Nav: Home

Argonne and Los Alamos National Laboratories develop more affordable fuel cell components

March 01, 2016

LOS ALAMOS, NM, March 1, 2016 -- Researchers at the U.S. Department of Energy's (DOE) Argonne and Los Alamos national laboratories have teamed up to support a DOE initiative through the creation of the Electrocatalysis Consortium (ElectroCat), a collaboration devoted to finding an effective but cheaper alternative to platinum in hydrogen fuel cells.

Announced last week, ElectroCat is dedicated to finding new ways to replace rare and costly platinum group metals in fuel cell cathodes with more accessible and inexpensive substitutes - such as materials based on the earth-abundant metals iron and cobalt.

The heart of the automotive fuel-cell power system is the fuel cell stack, which is where the platinum is used. "Platinum is a precious metal, which means that it is both expensive and difficult to get," said Piotr Zelenay, a Los Alamos National Laboratory fellow and lead scientist on the Los Alamos component of the consortium.

About half of the total cost of a typical automotive fuel cell stack comes directly from the cost of the platinum metal in the electrode catalysts. "In order to make hydrogen fuel cell cars an affordable reality, we need to find a way to either significantly reduce the amount of platinum needed or completely replace platinum with less expensive materials," said Debbie Myers, an Argonne senior chemist who will serve as the Argonne lead in the consortium.

"The challenge for us and for industry is to develop new catalysts that meet targets for activity, durability, cost and ease of integration into membrane electrode assemblies," Zelenay added. "Thankfully, the national laboratory system includes the people who have the skills to address these issues."

ElectroCat is one of four consortia that make up DOE's Energy Materials Network (EMN). The EMN will facilitate industry access to the unique scientific and technical resources available at the national laboratories, enabling manufacturers to bring advanced materials to market more quickly.

"At the core of virtually every problem we tackle at the Energy Department, there is a materials challenge," said Deputy Assistant Secretary for Transportation Reuben Sarkar. "Whether it's a better battery, a lighter material or a new fuel cell technology - materials underlie almost everything that we do, so shifting the paradigm from traditional materials research to an acceleration-focused strategy is crucial."

The partnership between Argonne and Los Alamos that forms the core of ElectroCat involves the study, creation and implementation of possible alternatives to platinum-based electrodes through material- development efforts headed by Los Alamos and accelerated by the high-throughput, combinatorial, characterization and electrode performance modeling capabilities at Argonne, as well as by applying a high-performance supercomputer to model new catalyst structures at Los Alamos.

In developing new materials to be explored, researchers at Los Alamos will bring to bear 15 years of experience in platinum-free catalyst design, synthesis, characterization and testing. In addition, Los Alamos can apply multi-scale modeling techniques that leverage world-class computing facilities to design catalysts with optimal activity, selectivity and durability.

Once the potential replacement candidate materials are identified, scientists in the consortium can examine materials using a number of different methods, including X-ray imaging and spectroscopy techniques at Argonne. Argonne researchers can also investigate samples in a number of different environments that replicate how they would function in real-world scenarios.

By combining the expertise and capabilities at Argonne and Los Alamos, in partnership with the private sector and universities, researchers expect to accelerate the development and implementation of platinum-free catalysts in fuel cells.

"The acceleration of progress in electrocatalysis without platinum will depend on focused catalyst design, guided by multi-scale modeling methods and facilitated by high-throughput methods for synthesis and screening," said Zelenay. "This partnership will integrate the strengths of both laboratories for this purpose."
-end-
About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWX Technologies, Inc. and URS Corporation for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

DOE/Los Alamos National Laboratory

Related Platinum Articles:

Single atom-thin platinum makes a great chemical sensor
Researchers at Chalmers University of Technology, Sweden, together with colleagues from other universities, have discovered the possibility to prepare one-atom thin platinum for use as a chemical sensor.
Scientists get atomistic picture of platinum catalyst degradation
Degradation of platinum, used as a key electrode material in the hydrogen economy, severely shortens the lifetime of electrochemical energy conversion devices, such as fuel cells.
Addition of sintilimab to pemetrexed and platinum improved progression-free survival
The interim analysis of ORIENT-11, a phase III double-blind randomized trial has shown a nearly two-fold increase in progression-free survival with addition of sintilimab to chemotherapy in patients with advanced or metastatic non-squamous non-small cell lung cancer without EGFR or ALK genomic aberrations, according to research data presented today at the International Association for the Study of Lung Cancer Virtual Presidential Symposium.
Platinum-based chemo may improve survival for some metastatic pancreatic cancer patients
Patients with metastatic pancreatic cancer who had germline or somatic mutations in DNA repair genes had better clinical outcomes after platinum-based chemotherapy, as compared with patients without these mutations.
Platinum-based agents not superior to standard chemotherapy
BIDMC clinician-researchers provide new evidence about the optimal way to treat patients who carry BRCA mutations who have been diagnosed with breast cancer.
Avoidance of apoptotic death via a hyperploid salvage survival pathway after platinum treatment in high grade serous carcinoma cell line models
The cover for issue 62 of Oncotarget features Figure 7, 'Proposed model of the hyperploid pathway as a salvage survival strategy regulated by the G2-M checkpoint,' by Yeung, et al.
Storing energy in hydrogen 20 times more effective using platinum-nickel catalyst
Catalysts accelerate chemical reactions, but the widely used metal platinum is scarce and expensive.
Tungsten suboxide improves the efficiency of platinum in hydrogen production
Researchers presented a new strategy for enhancing catalytic activity using tungsten suboxide as a single-atom catalyst (SAC).
Scientists improve pancreatic cancer diagnosis with multifunctional platinum nanoreactor
Scientists from Shanghai Jiao Tong University, University of Surrey and the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) have developed a multifunctional platinum (Pt) nanoreactor geared towards POC metabolic analysis that performs visual detection and mass spectrometry (MS) fingerprinting simultaneously.
Platinum-graphene fuel cell catalysts show superior stability over bulk platinum
Films of platinum only two atoms thick supported by graphene could enable fuel cell catalysts with unprecedented catalytic activity and longevity, according to a study published recently by researchers at the Georgia Institute of Technology.
More Platinum News and Platinum Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.