Nav: Home

Mapping the unknown: What is the function of non-coding RNA in plants?

March 01, 2016

DNA holds the blueprint for life. However, very little of the DNA in higher organisms are protein coding genes. For example, in humans only 3% of the DNA represents genes. The question is: what does the other 97% do? Curiously, most of what we know about genomic information is derived from studying the minority of the DNA that codes for proteins.

The majority of the DNA, which is turned into non-coding RNA, is as yet under-investigated. Therefor Postdoc Peter Kindgren from Copenhagen Plant Science Centre at University of Copenhagen has received a 2-year Marie Curie Individual Fellowship grant from EU to try to shed some light on the function of this non-coding RNA.

Plants have a sophisticated defense system

Together with his colleagues in the Marquardt lab at Copenhagen Plant Science Centre, Peter Kindgren studies, if non-coding RNA sequences are vital components in the complex regulation system in plants.

Plants do not have the option of flight as a response to different threats, e.g. changes in the environment or being eaten by insects. Instead they have developed a sophisticated compensatory regulation system to cope with the different challenges. Non-coding RNA could play an important role in this.

Temperature response is the focus of the particular project that Peter Kindgren will start to work on with the funding from Marie Curie. He explains:

"I am going to investigate the response of the model plant Arabidopsis thaliana to low temperatures. My aim is to analyze, if part of the non-coding RNA plays a role in the plant's adaptation to cold."

A long-term outcome of the research could be to make crop plants more resistant to temperature changes.

New technique for studying transcription

Developing a new technique to better understand what goes on during transcription of DNA into RNA in plants, will be an additional focus area.

"The new technique will allow us to actually see the dynamics of transcription as it takes place. We will be able to capture the non-coding RNA in great detail and before it is degraded. It is a brand new approach which will enable us to investigate the molecular events in the abundant but also still mysterious components of DNA," says Peter Kindgren.
-end-
Copenhagen Plant Science Centre

Post doc Peter Kindgren is part of the Marquardt Laboratory at the Copenhagen Plant Science Centre with focus on plant biology and plant biotechnology. It is a center under Department of Plant and Environmental Sciences at University of Copenhagen.

Read more about Copenhagen Plant Science Centre here: http://cpsc.ku.dk/

Faculty of Science - University of Copenhagen

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.