Nav: Home

Warming up to cryopreservation

March 01, 2017

Overcoming a major hurdle in transplant medicine, a new study reveals that nanotechnology can be used to rapidly rewarm cryogenically treated samples without damaging delicate frozen tissues, which may someday help make organ cryopreservation a reality. More than 60% of the hearts and lungs donated for transplantation must be discarded annually, because these tissues cannot be kept on ice for longer than four hours. According to recent estimates, if only half of unused organs were successfully transplanted, transplant waiting lists could be eliminated within two years. Long-term preservation methods like vitrification - which involves super-cooling biological samples to a glassy state - could establish tissue storage banks and reduce transplant rejection rates, greatly facilitating the process to find matching donors when needed. Unfortunately, while sophisticated cryopreservation methods exist to keep samples cold, tissues often suffer damage and even crack during the thawing process. Navid Manuchehrabadi and colleagues developed a unique approach to quickly warm up frozen tissues without compromising their cellular viability. The researchers mixed silica-coated iron oxide nanoparticles into a solution and generated uniform heat throughout the samples by applying an external magnetic field. After rewarming, none of the tissues displayed signs of harm, unlike control samples rewarmed slowly over ice. What's more, the nanoparticles were successfully washed away from the sample following thawing. The scientists also tested their set-up using frozen human skin cells, segments of pig heart tissue, and sections of pig arteries in larger-sized volumes amounting to 50 milliliters. Although scaling up the system to accommodate whole organs will require further optimization, the authors say the technology might be applied beyond cryogenics, including delivering lethal pulses of heat to cancer cells.
-end-


American Association for the Advancement of Science

Related Nanoparticles Articles:

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
Nanoparticles take a fantastic, magnetic voyage
MIT engineers have designed tiny robots that can help drug-delivery nanoparticles push their way out of the bloodstream and into a tumor or another disease site.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.