Nav: Home

Nanoinjection increases survival rate of cells

March 01, 2017

In a new study to be found in 'Scientific Reports' published by 'Nature', they show that with this method, nine out of ten cells survive being injected with foreign molecules.

One of the most well-known methods for studying bacterial, plant, and animal cells is fluorescence microscopy. When using this method, proteins or other structures in a cell are stained with the help of fluorescent probes. These molecules are fluorescent. Light excitation makes them glow, thereby illuminating the labeled structures inside the cell. 'The method works very well on fixed, that is non-living cells,' says Professor Dr. Thomas Huser, head of the Biomolecular Photonics research group. 'However, the problem is that much of what we want to know can be gained only from living cells.'

Dr. Simon Hennig adds: 'Living cells impede the intrusion of most fluorescent probes.' The physicist is working in Huser's research group. To overcome this resistance when delivering fluorescent probes into the cells, he has developed the method of nanoinjection. He uses a minute hollow glass pipette to deliver the fluorescent molecules to individual cells. The process is controlled by a computer. An instrument specially developed for nanoinjection inserts the pipette into the cell. The tip of this glass capillary is much smaller than that used in usual microinjection. Moreover, the process prevents the cell from increasing insize, because only the molecules are transferred and not the liquid in the pipette as well. 'The method is so precise that we can even deliver the molecules to the nucleus of a cell,' says Hennig.

The new study confirms that the method can be used to inject many types of probes and that is it very well tolerated by the cells. 'This proof was necessary, because previous techniques such as microinjection harm the cells so much that most do not survive the treatment,' says Hennig. His colleague Matthias Simonis tested the nanoinjection method on more than 300 cells and compared the results with those of microinjection. The main finding was that 92 per cent of the cells survived nanoinjection compared to 40 per cent for microinjection. 'The analyses also confirmed that these treated cells cells proliferated normally,' says Hennig. According to the physicist, proliferation is not just a sign of a healthy cell. It also opens up new possibilities for experiments. For example, a negative influence of the injection can be ruled out in advance. This allows researchers to study the injected cells without having to take the effect of the injection into account as well. Hennig views nanoinjection as a particularly promising way of studying, for example, how single cells react with each other.
Original publication:

Matthias Simonis, Wolfgang Hübner, Alice Wilking, Thomas Huser & Simon Hennig: Survival rate of eukaryotic cells following electrophoretic nanoinjection. Nature Publishing Group,, published on the 25th of January 2017

Further information is available online at:

Description of nanoinjection:

Bielefeld University

Related Molecules Articles:

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at