Nav: Home

Cholesterol-processing enzyme protects from debilitating brain lesions

March 01, 2017

An enzyme that helps break down cholesterol may also be a therapeutic target to stave off neurologic diseases, including Alzheimer's and a rare genetic disorder, according to a new study published in the Journal of Biological Chemistry. Researchers from Case Western Reserve University School of Medicine, the National Institute of Standards and Technology, and Karolinska Institute in Sweden discovered that a specific enzyme in the brain could reduce the formation of debilitating brain lesions in the two diseases. A clinical trial to test the enzyme's potential as a therapeutic target is planned for later this year.

The targeted enzyme's primary purpose is to eliminate excess cholesterol from the brain. But the researchers hypothesized it could also help remove another cholesterol-like molecule--cholestanol. Cholestanol is normally found in very low levels in the body, at least 500 times less often than cholesterol, but spikes in people with a rare, uncurable genetic disease called cerebrotendinous xanthomatosis. Patients with the disease slowly accumulate cholestanol in areas of the brain responsible for muscle coordination, causing seizures, involuntary movements, and cognitive decline. With help from the right enzymes, the debilitating accumulations could be eliminated.

"We found that an enzyme called CYP46A1 not only eliminates cholesterol but also cholestanol from the brain," said Irina Pikuleva, PhD, study lead and Professor and Vice Chair of Research in the Department of Ophthalmology and Visual Sciences at Case Western Reserve University School of Medicine. "CYP46A1 also seems to eliminate cholestanol from many regions of the brain except the cerebellum." The findings explain why people with the rare genetic disease end up with toxic levels of cholestanol in their cerebellums specifically. Without the elimination process in that brain region, cholestanol accumulates and wreaks havoc on brain circuitry.

The discovery is a huge step forward in understanding the mechanism behind the rare genetic disease and its associated brain lesions that have perplexed doctors for decades. Said Pikuleva, "This paper establishes a biochemical basis for the preferential lesion formation in the cerebrotendinous xanthomatosis brain, a finding that nobody could explain since this disease was described by L. von Bogaert in 1937." The study is also the first to implicate the enzyme CYP46A1 in cholestanol metabolism at all, which could inform other research related to lipid storage disorders.

"Cholestanol accumulation in the body reflects an imbalance between its production and its elimination," said Pikuleva. Previous studies, by Pikuleva's study collaborator Ingemar Bjorkhem, PhD of Karolinska Institutet in Sweden, established how cholestanol is produced in the brain. In the new study, the team studied mice genetically engineered to lack enzymes involved in the process to decipher how cholestanol is eliminated. Mice in the experiments metabolized brain cholestanol at different rates in different brain regions, depending on the ratios of cholesterol- and cholestanol-processing enzymes present. Said Pikuleva, "We found there are differences in the way different brain regions eliminate cholesterol and cholestanol."

The researchers suggest that enhancing the activity of CYP46A1 in the brain pharmacologically, or finding ways to steer it closer to pockets of cholestanol could help remove the harmful accumulations. The enzyme can be activated in mice by drugs already FDA-approved, including an HIV medication called efavirenz. Pikuleva is currently developing a clinical trial to test whether or not the HIV medication can activate CYP46A1 sufficiently in the human brain. The clinical trial is backed by the Alzheimer's Drug Discovery Foundation. Said Pikuleva, "If successful, this trial will identify CYP46A1 as a new pharmacologic target not only for the treatment of people with mild cognitive impairment due to early stage Alzheimer's disease, but also for patients with cerebrotendinous xanthomatosis who do not respond to standard treatment."
-end-
This work was supported in part by United States Public Health Service Grant GM62882 (to I.A.P) and P30 Core Grant EY11373.

For more information about Case Western Reserve University School of Medicine, please visit: http://case.edu/medicine.

Case Western Reserve University

Related Cholesterol Articles:

Experimental cholesterol-lowering drug effective at lowering bad cholesterol, study shows
Twice-yearly injections of an experimental cholesterol-lowering drug, inclisiran, were effective at reducing low-density lipoprotein (LDL) cholesterol, often called bad cholesterol, in patients already taking the maximum dose of statin drugs, according to data of the ORION-10 trial presented Saturday, Nov.
Rethinking how cholesterol is integrated into cells
Cholesterol is best known in connection with cardiovascular disease, but cholesterol is also vital for many fundamental processes in the body.
Seed oils are best for LDL cholesterol
Using a statistical technique called network meta-analysis, researchers have combined the results of dozens of studies of dietary oils to identify those with the best effect on patients' LDL cholesterol and other blood lipids.
Cholesterol leash: Key tethering protein found to transport cellular cholesterol
Cholesterol is an essential component of living organisms, but the mechanisms that transport cholesterol inside the cell are poorly understood.
New way to treat cholesterol may be on the horizon
A breakthrough discovery by scientists at Houston Methodist Research Institute could change the way we treat cholesterol.
How low should LDL cholesterol go?
New analysis shows that in a high-risk population, achieving ultra-low LDL cholesterol levels, down to <10 mg/dL, safely results in additional lowering of risk of cardiovascular events.
Does boosting 'good' cholesterol really improve your health?
A new review addresses the mysteries behind 'good' HDL cholesterol and why boosting its levels does not necessarily provide protection from cardiovascular risk for patients.
Researchers zero-in on cholesterol's role in cells
For the first time, by using a path-breaking optical imaging technique to pinpoint cholesterol's location and movement within the cell membrane, chemists at the University of Illinois at Chicago have made the surprising finding that cholesterol is a signaling molecule that transmits messages across the cell membrane.
Raising 'good cholesterol' not as effective as lowering 'bad cholesterol'
Low and very high levels of HDL, or 'good cholesterol' are associated with a higher risk of dying from heart disease, cancer and other causes, according to a study today in the Journal of the American College of Cardiology.
New gene for familial high cholesterol
New research from Denmark reveals the gene that explains one quarter of all familial hypercholesterolemia with very high blood cholesterol.
More Cholesterol News and Cholesterol Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.