Nav: Home

Scientists develop spectacles for X-ray lasers

March 01, 2017

An international team of scientists has tailored special X-ray glasses to concentrate the beam of an X-ray laser stronger than ever before. The individually produced corrective lens eliminates the inevitable defects of an X-ray optics stack almost completely and concentrates three quarters of the X-ray beam to a spot with 250 nanometres (millionths of a millimetre) diameter, closely approaching the theoretical limit. The concentrated X-ray beam can not only improve the quality of certain measurements, but also opens up entirely new research avenues, as the team surrounding DESY lead scientist Christian Schroer writes in the journal Nature Communications.

Although X-rays obey the same optical laws as visible light, they are difficult to focus or deflect: "Only a few materials are available for making suitable X-ray lenses and mirrors," explains co-author Andreas Schropp from DESY. "Also, since the wavelength of X-rays is very much smaller than that of visible light, manufacturing X-ray lenses of this type calls for a far higher degree of precision than is required in the realm of optical wavelengths -- even the slightest defect in the shape of the lens can have a detrimental effect."

The production of suitable lenses and mirrors has already reached a very high level of precision, but the standard lenses, made of the element beryllium, are usually slightly too strongly curved near the centre, as Schropp notes. "Beryllium lenses are compression-moulded using precision dies. Shape errors of the order of a few hundred nanometres are practically inevitable in the process." This results in more light scattered out of the focus than unavoidable due to the laws of physics. What's more, this light is distributed quite evenly over a rather large area.

Such defects are irrelevant in many applications. "However, if you want to heat up small samples using the X-ray laser, you want the radiation to be focussed on an area as small as possible," says Schropp. "The same is true in certain imaging techniques, where you want to obtain an image of tiny samples with as much details as possible."

In order to optimise the focussing, the scientists first meticulously measured the defects in their portable beryllium X-ray lens stack. They then used these data to machine a customised corrective lens out of quartz glass, using a precision laser at the University of Jena. The scientists then tested the effect of these glasses using the LCLS X-ray laser at SLAC National Accelerator Laboratory in the U.S.

"Without the corrective glasses, our lens focused about 75 per cent of the X-ray light onto an area with a diameter of about 1600 nanometres. That is about ten times as large as theoretically achievable," reports principal author Frank Seiboth from the Technical University of Dresden, who now works at DESY. "When the glasses were used, 75 per cent of the X-rays could be focused into an area of about 250 nanometres in diameter, bringing it close to the theoretical optimum." With the corrective lens, about three times as much X-ray light was focused into the central speckle than without it. In contrast, the full width at half maximum (FWHM), the generic scientific measure of focus sharpness in optics, did not change much and remained at about 150 nanometres, with or without the glasses.

The same combination of mobile standard optics and tailor-made glasses has also been studied by the team at DESY's synchrotron X-ray source PETRA III and the British Diamond Light Source. In both cases, the corrective lens led to a comparable improvement to that seen at the X-ray laser. "In principle, our method allows an individual corrective lens to be made for every X-ray optics," explains lead scientist Schroer, who is also a professor of physics at the University of Hamburg.

"These so-called phase plates can not only benefit existing X-ray sources, but in particular they could become a key component of next-generation X-ray lasers and synchrotron light sources," emphasises Schroer. "Focusing X-rays to the theoretical limits is not only a prerequisite for a substantial improvement in a range of different experimental techniques; it can also pave the way for completely new methods of investigation. Examples include the non-linear scattering of particles of light by particles of matter, or creating particles of matter from the interaction of two particles of light. For these methods, the X-rays need to be concentrated in a tiny space which means efficient focusing is essential."
-end-
Involved in this research project were the Technical University of Dresden, the Universities of Jena and Hamburg, the Royal Technical University of Stockholm (KTH), Diamond Light Source, SLAC National Accelerator Laboratory and DESY.

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

Reference

Perfect X-ray focusing via fitting corrective glasses to aberrated optics; Frank Seiboth et al.; Nature Communications, 2017; DOI: 10.1038/ncomms14623

Deutsches Elektronen-Synchrotron DESY

Related Particles Articles:

Tiny 'bridges' help particles stick together
Understanding how particles bind together has implications for everything from the likelihood a riverbank will erode to the mechanism by which a drug works in the body.
Micromotors push around single cells and particles
A new type of micromotor -- powered by ultrasound and steered by magnets -- can move around individual cells and microscopic particles in crowded environments without damaging them.
Tiny particles lead to brighter clouds in the tropics
When clouds loft tropical air masses higher in the atmosphere, that air can carry up gases that form into tiny particles, starting a process that may end up brightening lower-level clouds, according to a CIRES-led study published today in Nature.
Closing in on elusive particles
In the quest to prove that matter can be produced without antimatter, the GERDA experiment at the Gran Sasso Underground Laboratory in Italy is looking for signs of neutrinoless double beta decay.
Bone particles in blood
A researcher at The University of Texas at Arlington has found that blood vessels within bone marrow may progressively convert into bone with advancing age.
Airborne particles can send our detox systems into overdrive
As the world gets more and more industrialized, the risk of developing respiratory diseases increases.
Immortal quantum particles
Decay is relentless in the macroscopic world: broken objects do not fit themselves back together again.
Computing faster with quasi-particles
In collaboration with researchers from Harvard University, researchers from the University of Würzburg have made an important step on the road to topological quantum computers.
Scientists levitate particles with sound to find out how they cluster together
Scientists from the University of Chicago and the University of Bath used sound waves to levitate particles, revealing new insights about how materials cluster together in the absence of gravity -- principles which underlie everything from how molecules assemble to the very early stages of planet formation from space dust.
How ice particles promote the formation of radicals
The production of chlorofluorocarbons, which damage the ozone layer, has been banned as far as possible.
More Particles News and Particles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.