Nav: Home

Quantum entanglement between a single photon and a trillion of atoms

March 01, 2017

New light is shed on the famous paradox of Einstein, Podolsky and Rosen after 80 years. A group of researchers from the Faculty of Physics at the University of Warsaw has created a multidimensional entangled state of a single photon and a trillion of hot rubidium atoms. This hybrid entanglement has been stored in the laboratory for several microseconds. The research has been published in the prestigious Optica journal.

In their famous Physical Review article published in 1935, A. Einstein, B. Podolsky and N. Rosen have considered a decay of a particle into two products. In their thought-experiment, two products of decay were projected in exactly opposite directions, or more scientifically speaking their momenta were anti-correlated. It would not be a mystery within the framework of classical physics, however when applying the rules of the Quantum theory, the three researchers quickly arrived at a paradox. The Heisenberg uncertainty principle, dictating that position and momentum of a particle cannot be measured at the same time within arbitrary precision, lies at the center of this paradox. In Einstein's thought-experiment one can measure momentum of one particle and immediately know momentum of the other without measurement, as it is exactly opposite. Then, one only needs to measure position of this second particle and the Heisenberg uncertainty principle seems to be violated, which seriously baffled the three physicists.

Only today we know that this experiment is not, in fact, a paradox. The mistake of Einstein and co-workers was to use one-particle uncertainty principle to a system of two particles. If we treat these two particles as described by a single quantum state, we learn that the original uncertainty principle ceases to apply, especially if these particles are entangled.

In the Quantum Memories Laboratory at the University of Warsaw, the group of three physicists was first to create such an entangled state consisting of a macroscopic object - a group of about one trillion atoms, and a single photon - a particle of light. "Single photons, scattered during the interaction of a laser beam with atoms, are registered on a sensitive camera. A single registered photon carries information about the quantum state of the entire group of atoms. The atoms may be stored, and their state may be retrieved on demand." - says Michal Dabrowski, PhD student and co-author of the article.

The results of the experiment confirm that the atoms and the single photon are in a joint, entangled state. By measuring position and momentum of the photon, we gain all information about the state of atoms. To confirm this, polish scientists convert the atomic state into another photon, which again is measured using the state-of-the-art camera developed in the Quantum Memories Laboratory. "We demonstrate the Einstein-Podolsky-Rosen apparent paradox in a very similar version as originally proposed in 1935, however we extend the experiment by adding storage of light within the large group of atoms. Atoms store the photon in a form of a wave made of atomic spins, containing one trillion atoms. Such a state is very robust against loss of a single atoms, as information is spread across so many particles." - says Michal Parniak, PhD student taking part in the study.

The experiment performed by the group from the University of Warsaw is unique in one other way as well. The quantum memory storing the entangled state, created thanks to "PRELUDIUM" grant from the Poland's National Science Centre and "Diamentowy Grant" from the Polish Ministry of Science and Higher Education, allows for storage of up to 12 photons at once. This enhanced capacity is promising in terms of applications in quantum information processing. "The multidimensional entanglement is stored in our device for several microseconds, which is roughly a thousand times longer than in any previous experiments, and at the same time long enough to perform subtle quantum operations on the atomic state during storage" - explains Dr. Wojciech Wasilewski, group leader of the Quantum Memories Laboratory team.

The entanglement in the real and momentum space, described in the Optica article, can be used jointly with other well-known degrees of freedom such as polarization, allowing generation of so-called hyper-entanglement. Such elaborate ideas constitute new and original test of the fundamentals of quantum mechanics - a theory that is unceasingly mysterious yet brings immense technological progress.
-end-
Physics and Astronomy first appeared at the University of Warsaw in 1816, under the then Faculty of Philosophy. In 1825 the Astronomical Observatory was established. Currently, the Faculty of Physics' Institutes include Experimental Physics, Theoretical Physics, Geophysics, Department of Mathematical Methods and an Astronomical Observatory. Research covers almost all areas of modern physics, on scales from the quantum to the cosmological. The Faculty's research and teaching staff includes ca. 200 university teachers, of which 88 are employees with the title of professor. The Faculty of Physics, University of Warsaw, is attended by ca. 1000 students and more than 170 doctoral students.

SCIENTIFIC PAPERS:

"Einstein-Podolsky-Rosen paradox in a hybrid bipartite system"
M. Dabrowski, M. Parniak, W. Wasilewski
Optica 4, 272-275 (2017); DOI: 10.1364/OPTICA.4.000272

CONTACTS:

Dr. Wojciech Wasilewski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw
tel. +48 22 5532630
email: wojciech.wasilewski@fuw.edu.pl

M.Sc. Michal Dabrowski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw
tel. +48 22 5532629
email: michal.dabrowski@fuw.edu.pl

RELATED LINKS:

http://www.fuw.edu.pl/
Faculty of Physics, University of Warsaw.

http://psi.fuw.edu.pl/
Quantum Memories Laboratory, Institute of Experimental Physics, Faculty of Physics, University of Warsaw.

http://www.fuw.edu.pl/informacje-prasowe.html
Press office of the Faculty of Physics, University of Warsaw.

IMAGES:

FUW170301b_fot01s.jpg
HR: http://www.fuw.edu.pl/press/images/2017/FUW170301b_fot01.jpg
Visualization of a hybrid bipartite entanglement between a single photon (blue) and an atomic spin-wave excitation inside quantum memory glass cell, subsequently confirmed in the detection process of a second photon (red). Presented setup enables the demonstration of Einstein-Podolsky-Rosen paradox with true positions and momenta. (Source: UW Physics, Michal Dabrowski)

FUW170301b_fot02s.jpg
HR: http://www.fuw.edu.pl/press/images/2017/FUW170301b_fot02.jpg
From right: Michal Parniak uses the green laser to shining the glass cell with quantum memory, holding by Wojciech Wasilewski. Michal Dabrowski makes a simultaneous measurement of position and momentum of photons generated inside the memory. (Source: UW Physics, Mateusz Mazelanik)

Faculty of Physics University of Warsaw

Related Physics Articles:

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.
Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.
Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.
Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.
Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
More Physics News and Physics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.