Nav: Home

Queen's-led experiment makes substantial leap forward in quest for dark matter

March 01, 2017

KINGSTON/SUDBURY - New research, submitted for publication by the PICO Collaboration, has produced new direct-detection constraints on the existence of WIMPs (weakly interacting massive particles) - a type of subatomic particle believed to be a leading contender for the elusive dark matter. The study, co-led by Queen's University physicist Anthony Noble, represents a significant improvement on previous detection constraints, and a substantial step forward in the search for dark matter.

Dr. Noble is the Canadian principal investigator on PICO. He explains that the new detection limits will help narrow the focus of future detection efforts and will guide the design of future experiments that will offer greater sensitivity and a greater likelihood of dark matter detection.

"We are extremely excited about these results," says Dr. Noble. "Not only have we established a new world-leading limit for dark matter interactions, but we have also demonstrated that with sufficient controls the bubble chamber technology can be run free of backgrounds that could mimic the signal. This bodes very well for the future as the collaboration is poised to launch a new tonne scale detector based on this technology. This new detector, dubbed PICO 500, will have an order of magnitude greater physics capability and will explore a vast swathe of the parameter space predicted by dark matter theories."

The PICO-60 experiment is currently the world's largest bubble chamber in operation. It is filled with 45 litres of octafluoropropane - a target fluid used to detect WIMP interactions. The detector maintains the target fluid in a superheated state such that, when dark matter particles interact with the fluorine in the fluid, the ever so slight energy deposit triggers the fluid to begin to rapidly boil at that location and creates a bubble in the chamber. Cameras and acoustic sensors around the chamber observe the bubble formation and evolution, and are used to improve the ability to distinguish between possible dark matter interactions and other background sources when analysing the data.

"Queen's researchers have long been at the cutting edge of discoveries in the field of particle astrophysics," says John Fisher, Acting Vice-Principal (Research) at Queen's. "This finding by the PICO experiment continues to reflect that leadership and represents a tremendous leap forward in the hunt for the most elusive matter in our universe."

Queen's University is home to Arthur McDonald, co-recipient of the 2015 Nobel Prize in Physics for his groundbreaking research on neutrinos, as well as Gilles Gerbier, the Canada Excellence Research Chair in Particle Astrophysics. The finding announced today continues a legacy of scientific breakthroughs and world-leading research that has cemented Queen's reputation at the forefront of the field. In 2016, the Canada First Research Excellence Fund provided Queen's with a significant investment to support the creation of the Canadian Particle Astrophysics Research Centre (CPARC). The centre will help facilitate a number of leading-edge projects, including the current and future upgrades to the PICO experiment, which will allow Queen's and its partner institutions to continue on this trajectory of research excellence.

The paper, titled Dark Matter Search Results from the PICO-60 C3F8 Bubble Chamber, has been submitted for peer review and is available online on arXiv.
About PICO:

PICO is an international collaboration consisting of 17 partner institutions, operating two bubble chamber experiments at Sudbury, Ontario's SNOLAB facility. Located 2 kilometers underground in an active nickel mine, SNOLAB is one of only a handful of underground laboratories worldwide capable of supporting the current and future generations of subatomic and astroparticle physics experiments, seeking to unlock the mysteries of the universe.

About Queen's University:

Queen's distinguishes itself as one of the leading research-intensive institutions in Canada. The mission is to advance research excellence, leadership and innovation, as well as enhance Queen's impact at a national and international level. Through undertaking leading-edge research, Queen's is addressing many of the world's greatest challenges, and developing innovative ideas and technological advances brought about by discoveries in a variety of disciplines. Queen's University is a member of the U15 Group of Canadian Research Universities.

Queen's University

Related Dark Matter Articles:

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
DNA repeats -- the genome's dark matter
First direct analysis of pathogenic sequence repeats in the human genome.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
Physicists have found a way to 'hear' dark matter
Physicists at Stockholm University and the Max Planck Institute for Physics have turned to plasmas in a proposal that could revolutionise the search for the elusive dark matter.
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at