Nav: Home

Groundbreaking technology successfully rewarms large-scale tissues preserved at low temperatures

March 01, 2017

A research team, led by the University of Minnesota, has discovered a groundbreaking process to successfully rewarm large-scale animal heart valves and blood vessels preserved at very low temperatures. The discovery is a major step forward in saving millions of human lives by increasing the availability of organs and tissues for transplantation through the establishment of tissue and organ banks.

The research was published today in Science Translational Medicine, a peer-reviewed research journal published by the American Association for the Advancement of Sciences (AAAS). The University of Minnesota holds two patents related to this discovery.

"This is the first time that anyone has been able to scale up to a larger biological system and demonstrate successful, fast, and uniform warming of hundreds of degrees Celsius per minute of preserved tissue without damaging the tissue," said University of Minnesota mechanical engineering and biomedical engineering professor John Bischof, the senior author of the study.

Bischof said in the past, researchers were only able to show success at about 1 milliliter of tissue and solution. This study scales up to 50 milliliters, which means there is a strong possibility they could scale up to even larger systems, like organs.

Currently, more than 60 percent of the hearts and lungs donated for transplantation must be discarded each year because these tissues cannot be kept on ice for longer than four hours. According to recent estimates, if only half of unused organs were successfully transplanted, transplant waiting lists could be eliminated within two years.

Long-term preservation methods, like vitrification, that cool biological samples to an ice-free glassy state using very low temperatures between -160 and -196 degrees Celsius have been around for decades. However, the biggest problem has been with the rewarming. Tissues often suffer major damage during the rewarming process making them unusable, especially at larger scales.

In this new study, the researchers addressed this rewarming problem by developing a revolutionary new method using silica-coated iron oxide nanoparticles dispersed throughout a cryoprotectant solution that included the tissue. The iron oxide nanoparticles act as tiny heaters around the tissue when they are activated using noninvasive electromagnetic waves to rapidly and uniformly warm tissue at rates of 100 to 200 degrees Celsius per minute, 10 to 100 times faster than previous methods.

After rewarming and testing for viability, the results showed that none of the tissues displayed signs of harm, unlike control samples rewarmed slowly over ice or those using convection heating. The researchers were also able to successfully wash away the iron oxide nanoparticles from the sample following the warming.

Bischof said the discovery is the result of his team's research in many different fields to preserve or destroy cells and tissue at either ultra high temperatures or ultra low temperatures.

"We've gone to the limits of what we can do at very high temperatures and very low temperatures in these different areas," Bischof said. "Usually when you go to the limits, you end up finding out something new and interesting. These results are very exciting and could have a huge societal benefit if we could someday bank organs for transplant."

Although scaling up the system to accommodate entire organs will require further optimization, the authors are optimistic. They plan to start with rodent organs (such as rat and rabbit) and then scale up to pig organs and then, hopefully, human organs. The technology might also be applied beyond cryogenics, including delivering lethal pulses of heat to cancer cells.
-end-
The research was funded by the National Science Foundation (NSF), National Institutes of Health (NIH), U.S. Army Medical Research and Materiel Command, Minnesota Futures Grant from the University of Minnesota, and the University of Minnesota Carl and Janet Kuhrmeyer Chair in Mechanical Engineering.

In addition to Bischof, the study authors from the University of Minnesota include postdoctoral researchers Navid Manuchehrabadi, Zhe Gao, Jin Jin Zhang, Hattie Ring, and Qi Shao; graduate student Feng Liu; undergraduate student Michael McDermott; Dentistry Professor Alex Fok; Radiology Professor Michael Garwood; Chemistry Professor Christy Haynes. Other team members include Mechanical Engineering Professor Yoed Rabin at Carnegie Mellon University and Bioengineering Professor Kelvin Brockbank at Clemson University and Tissue Testing Technologies LLC.

To read the complete study entitled "Nanowarming for Regenerative Medicine: Improving Tissue Cryopreservation by Inductive Heating of Magnetic Nanoparticles," visit the Science Translational Medicine website.

University of Minnesota

Related Transplantation Articles:

Elderly patients also benefit from kidney transplantation
So far, kidney transplantation has generally not been offered to elderly patients (>75 years) because of the perioperative risks.
New material will allow abandoning bone marrow transplantation
Scientists from the National University of Science and Technology 'MISIS' developed nanomaterial, which will be able to restore the internal structure of bones damaged due to osteoporosis and osteomyelitis.
Fewer medical tests -- timely listing for transplantation
Younger patients would benefit greatly from kidney transplantation. Their expected remaining lifetime may even be doubled by having a transplant.
Uterus transplantation -- ethically just as problematic as altruistic surrogacy
In 2014, the first child to have been gestated in a donated uterus was born.
Advancing transplantation: Hepatitis C-infected organs safe for transplantation when followed by antiviral treatment
Twenty patients at Penn Medicine have been cured of the hepatitis C virus (HCV) following lifesaving kidney transplants from deceased donors who were infected with the disease, according to a study published today in Annals of Internal Medicine.
Transplantation followed by antiviral therapy cured hepatitis C
Twenty patients who received kidneys transplanted from hepatitis C virus (HCV)-infected donors experienced HCV cure, good quality of life, and excellent renal function at one year.
The Journal of Heart and Lung Transplantation: 50 years of heart transplantation progress
This month marks the 50th anniversary of the world's first human heart transplant performed at Groote Schuur Hospital in Cape Town by South African surgeon, Christiaan Barnard.
Older donor lungs should be considered for transplantation
With a scarcity of lungs available for transplantation, the use of lungs from donors older than age 60 has been shown to achieve reasonable outcomes and should be considered as a viable option, according to research published online today in The Annals of Thoracic Surgery.
VA patients face disparities in kidney transplantation
From 2004 to 2016, VA patients had lower rates of transplantation compared with patients with Medicare or private insurance.
Hepatocellular carcinoma: Resection vs. transplantation
Liver transplantation is the gold standard for treating early hepatocellular cancers.
More Transplantation News and Transplantation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.