Nav: Home

Three Pitt chemical engineering faculty receive NSF CAREER awards totaling $1.5 million

March 01, 2017

PITTSBURGH (March 1, 2017) ... For the first time in a funding cycle, three researchers from one University of Pittsburgh department were recognized with the National Science Foundation's most significant award in support of junior faculty. John Keith, Giannis Mpourmpakis and Christopher Wilmer, all assistant professors of chemical and petroleum engineering at Pitt's Swanson School of Engineering received individual NSF CAREER awards, which "recognize faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations."

The three professors received $500,000 each in funding for the five-year awards.

"Receiving an NSF CAREER Award can be one of the most tremendous highlights for any junior faculty member, but it is a true honor for a university to receive three awards within one department," noted Steven R. Little, the William Kepler Whiteford Professor and Department Chair of Chemical and Petroleum Engineering. "What's more, these three researchers are focused on dynamic energy research, and these grants will not only benefit their labs, but also the students they teach and mentor. As an additional component, the grants will enable our students to engage in community outreach and encourage young adults to consider careers in STEM."

The Pitt Chemical and Petroleum Engineering CAREER Awards include:

John A. Keith, Assistant Professor and Inaugural R.K. Mellon Faculty Fellow in Energy
SusChEM: Unlocking local solvation environments for energetically efficient hydrogenations with quantum chemistry

Summary: This project will address the production of carbon-neutral liquid fuels via electrocatalytic reduction of carbon dioxide (CO2) to methanol. Its focus will integrate high-level electronic structure theory, molecular dynamics, and machine learning to understand how interactions between solvent molecules, salts, and co-solutes regulate CO2 reduction from greenhouse gas into fuels.

Dr. Keith's graduate and undergraduate students will develop educational modules to engage and excite students in the Pittsburgh Public School District about opportunities in STEM fields, with an emphasis on renewable energy and computational chemistry.

Giannis (Yanni) Mpourmpakis, Assistant Professor
Designing synthesizable, ligand-protected bimetallic nanoparticles and modernizing engineering curriculum through computational nanoscience

Summary: Although scientists can chemically synthesize metal nanoparticles (NPs) of different shapes and sizes, understanding of NP growth mechanisms affecting their final morphology and associated properties is limited. With the potential for NPs to impact fields from energy to medicine and the environment, determining with computer simulations the NP growth mechanisms and morphologies that can be synthesized in the lab is critical to advance NP application.

Because this is a relatively new field, traditional core courses in science and engineering lack examples from the nanotechnology arena. In addition to improving the research, the award will enable Dr. Mpourmpakis and his students to modernize the traditional course of Chemical Thermodynamics by introducing animation material based on cutting-edge nanotechnology examples, and developing a nanoscale-inspired interactive computer game.

Christopher Wilmer, Assistant Professor
Fundamental limits of physical adsorption in porous materials

Summary: The development of new porous materials is critical to improving important gas storage and separations applications, and will have a positive impact on reducing greenhouse gases. This includes the deployment of methane and/or hydrogen gases as alternative fuels, development of new filters for removing trace gaseous contaminants from air, and separation of carbon dioxide from flue gas to mitigate greenhouse emissions from the burning of fossil fuels. Dr. Wilmer's grant will enable his lab to utilize computational methods to probe the limits of material performance for physical adsorption to porous materials. Although past computational screening has suggested physical limits of adsorption capacity for metal-organic frameworks (MOFs), this project will explore the novel use of so-called "pseudomaterials," which represent all potential atomistic arrangements of matter in a porous material.

As part of community outreach, Dr. Wilmer's research group to develop educational movies on the fundamental science of gas adsorption, including those relevant to carbon capture to mitigate climate change.
-end-


University of Pittsburgh

Related Carbon Articles:

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.
Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?
First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.
How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team
A new way to convert carbon dioxide into the building block for sustainable liquid fuels was very efficient in tests and did not have the reaction that destroys the conventional device.
How much carbon the land can stomach with more carbon dioxide in the air
Researchers from 28 institutions in nine countries succeeded in quantifying carbon dioxide fertilization for the past five decades, using simulations from 12 terrestrial ecosystem models and observations from seven field carbon dioxide enrichment experiments.
'Charismatic carbon'
According to the Intergovernmental Panel on Climate Change (IPCC), addressing carbon emissions from our food sector is absolutely essential to combatting climate change.
Extreme wildfires threaten to turn boreal forests from carbon sinks to carbon sources
A research team investigated the impact of extreme fires on previously intact carbon stores by studying the soil and vegetation of the boreal forest and how they changed after a record-setting fire season in the Northwest Territories in 2014.
Can we still have fun if the UK goes carbon neutral?
Will Britain going carbon neutral mean no more fun? Experts from the University of Surrey have urged local policy makers to put in place infrastructure that will enable people to enjoy recreation and leisure while keeping their carbon footprint down.
Could there be life without carbon? (video)
One element is the backbone of all forms of life we've ever discovered on Earth: carbon.
More Carbon News and Carbon Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.