Nav: Home

MD Anderson study ties protein 'reader' ENL to common leukemia

March 01, 2017

HOUSTON ? Anyone who uses an employee badge to enter a building may understand how a protein called ENL opens new possibilities for treating acute myeloid leukemia (AML), a fast-growing cancer of bone marrow and blood cells and the second most common type of leukemia in children and adults.

Findings from a study at The University of Texas MD Anderson Cancer Center revealed the leukemia-boosting abilities of ENL, which contains a protein component called YEATS that "reads" histone proteins. Histone proteins make up chromatin, large clusters of DNA- and RNA-containing molecules comprising our body's chromosomes. Just as a scanner "reads" data on an identification badge, ENL recognizes a type of histone modification known as acetylation.

Research results, which build upon a previous MD Anderson study of histone-reading proteins, are published in the March 1 online issue of Nature. The findings indicated treatment against ENL with a class of experimental drugs called bromodomain and extra-terminal (BET) inhibitors may be effective for treating AML.

"Our study showed that ENL is required for disease maintenance in AML," said Xiaobing Shi, Ph.D., associate professor of Epigenetics and Molecular Carcinogenesis. "Depletion of ENL led to anti-leukemic effects, suppressing growth both in vivo and in vitro. Notably, disrupting ENL further sensitized leukemia cells to BET inhibitors."

Histone modifications like acetylation serve as docking sites for reader proteins which recognize specific modifications, influencing downstream biological outcomes. While many such reader proteins have been identified for histone modifications called methylation, few are known to recognize histone acetylation.

Shi's team employed CRISPR, a gene-editing tool, to deplete ENL and suppress cancer gene expression, which was crucial given that cancer cells often co-opt chromatin regulatory pathways.

"Targeting epigenetic readers represents a class of anti-cancer therapy that we believe holds clinical promise," said Hong Wen, Ph.D., research assistant professor of Epigenetics and Molecular Carcinogenesis and co-first author of the paper. "Our study revealed ENL as a chromatin reader that regulates oncogenic programs, thus establishing ENL as a potential drug target for AML."
-end-
MD Anderson study team members included Xiaolu Wang of the Department of Epigenetics and Molecular Carcinogenesis. Other participating institutions included The Rockefeller University, New York; Memorial Sloan Kettering Cancer Center, New York; Dana-Farber Cancer Institute, Boston; Tsinghua University, Beijing; Baylor College of Medicine, Houston; Icahn School of Medicine at Mount Sinai, New York; and Harvard Medical School; Boston.

The study was funded by the National Institutes of Health (P30CA016672, RO1CA204639-01, CA66996, CA140575, 1R01CA204020, R01HG007538 and R01CA193466), the Cancer Prevention Research Institute of Texas (RP160237 and RP170285), the Leukemia and Lymphoma Society (LLS-SCOR 7006-13), the Robert A. Welch Foundation (G1719), the Major State Basic Research Development Program in China (2016FA0500700 and 2015CB910503), and the Tsinghua University Initiative Research program.

University of Texas M. D. Anderson Cancer Center

Related Leukemia Articles:

Vitamin B6, leukemia's deadly addiction
Researchers from CSHL and Memorial Sloan Kettering Cancer Center have discovered how Acute Myeloid Leukemia is addicted to vitamin B6.
Artificial intelligence tracks down leukemia
Artificial intelligence can detect one of the most common forms of blood cancer - acute myeloid leukemia -- with high reliability.
Milestone reached in new leukemia drug
Using a chemical compound called YKL-05-099, a team of cancer researchers from CSHL and the Dana Farber Institute was able to target the Salt-Inducible Kinase 3 (SIK3) pathway and extend survival in mice with MLL leukemia.
The drug combination effective against bovine leukemia
Scientists have succeeded in reducing levels of the bovine leukemia virus (BLV) in cows with severe infections by combining an immune checkpoint inhibitor and an enzyme inhibitor.
Towards a safer treatment for leukemia
An international team of researchers at VIB-KU Leuven, Belgium, the UK Dementia Institute and the Children's Cancer Institute, Australia, have found a safer treatment for a specific type of leukemia.
Research paves way for new source for leukemia drug
Chemistry researchers have patented a method for making anti-leukemia compounds that until now have only been available via an Asian tree that produces them.
An atlas of an aggressive leukemia
A team of researchers led by Bradley Bernstein at the Ludwig Center at Harvard has used single-cell technologies and machine learning to create a detailed 'atlas of cell states' for acute myeloid leukemia (AML) that could help improve treatment of the aggressive cancer.
Finding second hits to knock out leukemia
Targeted drugs are a cornerstone of personalized medicine, yet come with important drawbacks.
Understanding the emergence of leukemia
Acute T-cell lymphoblastic leukemia is a rare type of blood cancer that affects mostly children.
New treatment approach for leukemia
An international research team led by researchers from Vetmeduni Vienna have made an important discovery that could lead to a better understanding of lymphocytic leukemia.
More Leukemia News and Leukemia Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.