Nav: Home

Do you know where your xenon is?

March 01, 2018

Washington, DC--The paradox of the missing xenon might sound like the title of the latest airport thriller, but it's actually a problem that's stumped geophysicists for decades. New work from an international team including Carnegie's Alexander Goncharov and Hanyu Liu, and Carnegie alumni Elissaios Stavrou and Sergey Lobanov, is chasing down the solution to this longstanding puzzle.

The mystery stems from meteorites, which retain a record of our Solar System's earliest days. One type, called carbonaceous chondrites, contain some of the most-primitive known samples of Solar System material, including a lot more xenon than is found in our own planet's atmosphere.

"Xenon is one of a family of seven elements called the noble gases, some of which, such as helium and neon, are household names," said lead author Stavrou, now at Lawrence Livermore National Laboratory, about the team's paper in Physical Review Letters. "Their name comes from a kind of chemical aloofness; they normally do not combine, or react, with other elements."

Because xenon doesn't play well with others, it's deficiency in Earth's atmosphere--even in comparison to other, lighter noble gases, like krypton and argon, which theoretical predictions tell us should be even more depleted than xenon--is difficult to explain.

That doesn't mean many haven't tried.

This research team--which also included Yansun Yao of the University of Saskatchewan, Joseph Zaug also of LLNL, and Eran Greenberg, and Vitali Prakapenka of the University of Chicago--focused their attention on the idea that the missing xenon might be found deep inside the Earth, specifically hidden in compounds with nickel and, especially, iron, which forms most of the planet's core.

It's been known for a while that although xenon doesn't form compounds under ambient conditions, under the extreme temperatures and pressures of planetary interiors it isn't quite so aloof.

"When xenon is squashed by extreme pressures, its chemical properties are altered, allowing it to form compounds with other elements," Lobanov explained.

Using a laser-heated diamond anvil cell, the researchers mimicked the conditions found in the Earth's core and employed advanced spectroscopic tools to observe how xenon interacted with both nickel and iron.

They found that xenon and nickel formed XeNi3 under nearly 1.5 million times normal atmospheric pressure (150 gigapascals) and at temperatures of above about 1,200 degrees Celsius (1,500 kelvin). Furthermore, at nearly 2 million times normal atmospheric pressure (200 gigapascals) and at temperatures above about degrees 1,700 degrees Celsius (2000 kelvin), they synthesized complex XeFe3 compounds.

"Our study provides the first experimental evidence of previously theorized compounds of iron and xenon existing under the conditions found in the Earth's core," Goncharov said. "However, it is unlikely that such compounds could have been made early in Earth's history, while the core was still forming, and the pressures of the planet's interior were not as great as they are now."

The researchers are investigating whether a two-stage formation process could have trapped xenon in Earth's early mantle and then later incorporated it into XeFe3 when the core separated and the pressure increased. But more work remains to be done.
-end-
Part of this work was performed under the auspices of the U.S. DOE by LLNS, LLC. This work was supported by DARPA; the Deep Carbon Observatory; the Army Research Office; the Natural Sciences and Engineering Research Council of Canada; a Chinese Academy of Sciences visiting professorship for senior international scientists; the National Natural Science Foundation of China; the Ministry of Education and Science of Russian Federation; the Energy Frontier Research Center funded by the DOE, Office of Science, BES.

GSECARS is 378 supported by the U.S. NSF and DOE Geosciences. The ALS is supported by the Director, Office of Science, BES of DOE. Computing resources were 383 provided by the University of Saskatchewan, Westgrid, and Compute Canada.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Iron Articles:

An iron-clad asteroid
Mineralogists from Jena and Japan discover a previously unknown phenomenon in soil samples from the asteroid 'Itokawa': the surface of the celestial body is covered with tiny hair-shaped iron crystals.
It's Iron, Man: ITMO scientists found a way to treat cancer with iron oxide nanoparticles
Particles previously loaded with the antitumor drug are injected in vivo and further accumulate at the tumor areas.
Iron nanorobots show their true mettle
Multifunctional iron nanowires selectively obliterate cancer cells with a triple-punch combination attack.
The brain may need iron for healthy cognitive development
Iron levels in brain tissue rise during development and are correlated with cognitive abilities, according to research in children and young adults recently published in JNeurosci.
The regulators active during iron deficiency
Iron deficiency is a critical situation for plants, which respond using specific genetic programmes.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Getting to the root of how plants tolerate too much iron
Salk scientists have found a major genetic regulator of iron tolerance, a gene called GSNOR.
Stressed plants must have iron under control
When land plants' nutrient availability dwindles, they have to respond to this stress.
Is a great iron fertilization experiment already underway?
Using a new, highly sensitive tracer for human-derived iron falling on the ocean, researchers led by the USF College of Marine Science say we have underestimated the iron we add to the ocean compared to natural sources.
High on iron? It stops anaemia but has a downside
A global study looking at the role that iron plays in 900 diseases has uncovered the impact of both low and high iron levels -- and the news is mixed.
More Iron News and Iron Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.