Nav: Home

Unlocking a cell's potential to regenerate the heart

March 01, 2018

San Francisco, CA -- March 1, 2018 -- Some organisms have a remarkable capacity for regenerating tissue. If a fish or salamander suffers heart damage, for instance, their cells are able to divide and successfully repair the injured organ. Imagine if you could do the same.

In the embryo, human heart cells can divide and multiply, allowing the heart to grow and develop. The problem is that, right after birth, cardiomyocytes (heart muscle cells) lose their ability to divide. The same is true for many other human cells, including those of the brain, spinal cord, and pancreas.

"Because so many adult cells can't divide, your body can't replace cells that are lost, which causes disease," explained Deepak Srivastava, MD, president of the Gladstone Institutes and senior investigator. "If we could find a way to get these cells to divide again, we could regenerate a number of tissues."

For decades, the scientific community has been trying to do just that, with limited success. Until now, attempts have been ineffective and poorly reproducible.

In a new study published in the scientific journal Cell, Srivastava and his team finally reached this long-sought goal. They developed the first efficient and stable method to make adult cardiomyocytes divide and repair hearts damaged by heart attacks, at least in animal models.

Over 24 million people worldwide suffer from heart failure, with few treatment options available other than heart transplants for end-stage patients. The potential to create new muscle cells through cell division, much like a salamander does, could offer new hope to the millions living with damaged hearts.

Unlocking an Adult Cell's Potential to Multiply

Srivastava and his team identified four genes involved in controlling the cycle of cell division. They found that when combined--and only when combined--these genes cause mature cardiomyocytes to re-enter the cell cycle. This results in the cells dividing and rapidly reproducing.

"We discovered that when we increased the function of these four genes at the same time, the adult cells were able to start dividing again and regenerated heart tissue," said Tamer Mohamed, scientist at Tenaya Therapeutics and former postdoctoral scholar in Srivastava's laboratory, who is first author of the study. "We also showed that, after heart failure, this combination of genes significantly improves cardiac function."

The scientists tested their technique in animal models and cardiomyocytes derived from human stem cells. They used a rigorous approach to track whether the adult cells were truly dividing in the heart by genetically marking newly divided cells with a specific color that could be easily monitored. They demonstrated that 15-20 percent of the cardiomyocytes were able to divide and stay alive due to the four-gene cocktail.

"This represents a considerable increase in efficiency and reliability when compared to previous studies that could only cause up to 1 percent of cells to divide," said Srivastava, who is also a professor at UC San Francisco. "Of course, in human organs, the delivery of genes would have to be controlled carefully, since excessive or unwanted cell division could cause tumors."

To further simplify their technique, the team looked for ways to reduce the number of genes needed for cell division while maintaining efficiency. They found they could achieve the same results by replacing two of the four genes with two drug-like molecules.

Regenerating Multiple Human Tissues

The researchers believe that their technique could also be used to coax other types of adult cells to divide again, given that the four genes they used are not unique to the heart.

"Heart cells were particularly challenging because when they exit the cell cycle after birth, their state is really locked down--which might explain why we don't get heart tumors," said Srivastava. "Now that we know our method is successful with this difficult cell type, we think it could be used to unlock other cells' potential to divide, including nerve cells, pancreatic cells, hair cells in the ear, and retinal cells."

This could lead to a powerful regenerative approach to treat not only heart failure, but also brain damage, diabetes, hearing loss, and blindness. And one day, the human might just outperform the salamander.
-end-
About the Research Project

The paper "Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration" was published online by Cell on March 1, 2018: http://www.cell.com/cell/fulltext/S0092-8674(18)30158-2.

Other authors include Yen-Sen Ang, Ping Zhou, Yu Huang, Aryé Elfenbein, and Amy Foley from Gladstone, as well as Sergey Magnitsky from UCSF.

The research was supported by the National Institutes of Health, the American Heart Association, the L.K. Whittier Foundation, the Roddenberry Foundation, the Younger Family Fund, and the California Institute for Regenerative Medicine.

About the Gladstone Institutes

To ensure our work does the greatest good, the Gladstone Institutes (gladstone.org) focuses on conditions with profound medical, economic, and social impact--unsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. It has an academic affiliation with UC San Francisco.

Gladstone Institutes

Related Heart Failure Articles:

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.
Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.
Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.
Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.
How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.
Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.
NSAID impairs immune response in heart failure, worsens heart and kidney damage
Non-steroidal anti-inflammatory drugs, or NSAIDs, are widely known as pain-killers and can relieve pain and inflammation.
Heart cell defect identified as possible cause of heart failure in pregnancy
A new Tel Aviv University study reveals that one of the possible primary causes of heart failure in pregnant women is a functional heart cell defect.
In heart failure, a stronger heart could spell worse symptoms
Patients with stronger-pumping hearts have as many physical and cognitive impairments as those with weaker hearts, suggesting the need for better treatment.
Patients with common heart failure more likely to have lethal heart rhythms
New Smidt Heart Institute Research shows that patients with Heart Failure with Preserved Ejection Fraction (HFpEF) are more likely to have lethal heart rhythms.
More Heart Failure News and Heart Failure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.