Nav: Home

A spinning top of light

March 01, 2018

Short, rotating pulses of light reveal a great deal about the inner structure of materials. An international team of physicists led by Prof. Misha Ivanov of the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) has now developed a new method for precisely characterising such extremely short light pulses. The research results have been published in Nature Communications.

Not all light is equal: depending on how it is prepared, it can exist in very different forms. Not only can we choose different wavelengths or colours but, as an electromagnetic wave, light can also exhibit different forms of oscillation. It can occur in different polarisations, for example - either linearly polarised or circularly polarised, where the oscillations of the electromagnetic fields follow a line or go round in circles, respectively. Above all, extremely short pulses of polarised light waves are excellent for studying many different types of materials. We have methods for producing such pulses, but these methods are already pushing the limits of technical feasibility and the light pulses are not always produced with the desired properties.

A new method now allows us to characterise these short light pulses with unprecedented precision. The trouble starts with the fact that the processes of interest taking place inside matter, which we would like to study with our light pulses, are extremely short-lived. Accordingly, the light pulses have to be similarly short, in the range of around 100 attoseconds (billionths of a billionth of a second). In this unimaginably short timespan, a light wave can only undergo a few rotations. Even using the latest laser methods to produce such ultrashort pulses, it can easily happen that the light wave will not come out rotating the right way.

The concept for the new method can be described as follows: one fires an extremely short, high-energy and circularly polarised light pulse at an atom or a solid body where, upon being absorbed, the light pulse knocks an electron out of the body. This electron then carries information about the light wave itself and can furthermore reveal clues as to the properties of the sample being examined. Because the light pulses are circularly polarised, the ejected electrons also fly off with a rotating motion.

"You can compare the electrons being ejected with a one-armed sprinkler, which either continues turning in the direction you want it to, or which keeps stuttering and even changing its direction," says Misha Ivanov, Head of the Theory Department of the Max Born Institute. If the sprinkler is allowed to run for a while, then it will wet the grass in a full circle - irrespective of whether it rotates consistently or not. So, merely looking at the grass will not reveal whether the sprinkler has been turning exactly the way it was desired or not. "But if a gusty wind comes along, then we can distinguish whether the sprinkler has been turning regularly or irregularly," Ivanov says. If the wind blows alternately from the left or right each time the arm of the sprinkler faces left or right, then the patch of wet grass will not be circular, but rather elliptical in shape. A sprinkler rotating completely irregularly would magically conjure up an ellipse on the grass stretched in the wind direction, while a regularly rotating sprinkler will display a tilted ellipse.

This "wind" is added into the experiment in the form of an infrared laser pulse whose oscillations are perfectly synchronised with the ultrashort pulses. The infrared radiation accelerates the electron either to the left or right - just like the wind blows the water droplets.

"By measuring the electrons, we can then determine whether the light pulse possessed the desired consistent rotation or not," says the first author of the publication in Nature Communications, researcher Álvaro Jiménez-Galán of the Max Born Institute. "Our method allows one to characterise the properties of the ultrashort light pulses with unprecedented precision," Jiménez-Galán adds. And the more precisely these light pulses are characterised, the more detailed information can be derived about the electron's place of origin within an exotic material.

This is of special significance when it comes to studying a whole series of novel materials. These could include superconductors, which can conduct electricity without electrical resistance, or topological materials that exhibit exotic behaviour, the research of which earned a Nobel Prize in Physics in 2016. Materials like these could be used to make a quantum computer, for example, or could allow superfast, energy-efficient processors and memory chips to be built into normal computers and smartphones.

The new sprinkler method still only exists in theory for the moment, but ought to be implementable in the near future. "Our requirements are fully within the latest state of the art, so there is nothing to preclude this from being realised soon," Ivanov asserts.

Forschungsverbund Berlin

Related Electrons Articles:

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at