Nav: Home

Practical spin wave transistor one step closer

March 01, 2018

University of Groningen physicists have managed to alter the flow of spin waves through a magnet, using only an electrical current. This is a huge step towards the spin transistor that is needed to construct spintronic devices. These promise to be much more energy efficient than conventional electronics. The results were published on 2 March in Physical Review Letters.

Spin is a quantum mechanical property of electrons. Simply put, it makes electrons behave like small magnetic compass needles which can point up or down. This can be used to transfer or store information, creating spintronic devices that promise several advantages over normal microelectronics.

In a conventional computer, separate devices are needed for data storage (often using a magnetic process) and data processing (electronic transistors). Spintronics could integrate both in one device, so it would no longer be necessary to move information between storage and processing units. Furthermore, spins can be stored in a non-volatile way, which means that their storage requires no energy, in contrast to normal RAM memory. All this means that spintronics could potentially make faster and more energy-efficient computers.

Wave

To realize this, many steps have to be taken and a lot of fundamental knowledge has to be obtained. The Physics of Nano Devices group of physics professor Bart van Wees at the University of Groningen's Zernike Institute of Advanced Materials is at the forefront of this field. In their latest paper, they present a spin transistor based on magnons. Magnons, or spin waves, are a type of wave that only occurs in magnetic materials. 'You can view magnons as a wave, or a particle, like electrons', explains Ludo Cornelissen, PhD student in the Van Wees group and first author of the paper.

In their experiments, Cornelissen and Van Wees generate magnons in materials that are magnetic, but also electrically insulating. Electrons can't travel through the magnet, but the spin waves can - just like a wave in a stadium moves while the spectators all stay in place. Cornelissen used a strip of platinum to inject magnons into a magnet made of yttrium iron garnet (YIG). 'When an electron current travels through the strip, electrons are scattered by the interaction with the heavy atoms, a process that is called the spin Hall effect. The scattering depends on the spin of these electrons, so electrons with spin up and spin down are separated.'

Spin flip

At the interface of platinum and YIG, the electrons bounce back as they can't enter the magnet. 'When this happens, their spin flips from up to down, or vice versa. However, this causes a parallel spin flip inside the YIG, which creates a magnon.' The magnons travel through the material and can be detected with a second platinum strip.

'We described this spin transport through a magnet some time ago. Now, we've taken the next step: we wanted to influence the transport.' This was done using a third platinum strip between injector and detector. By applying a positive or negative current, it is possible to either inject additional magnons in the conduction channel or drain magnons from it. 'That makes our set up analogous to a field effect transistor. In such a transistor, an electric field of a gate electrode reduces or increases the number of free electrons in the channel, thus shutting down or boosting the current.'

Cornelissen and his colleagues show that adding magnons increases the spin current, while draining them causes a significant reduction. 'Although we were not yet able to switch off the magnon current completely, this device does act as a transistor', says Cornelissen. Theoretical modelling shows that reducing the thickness of the device can increase the depletion of magnons enough to stop the magnon current completely.

Superconductivity

But there is another interesting option, explains Cornelissen's supervisor Bart van Wees: 'In a thinner device, it could be possible to increase the amount of magnons in the channel to a level where they would form a Bose-Einstein condensate.' This is the phenomenon that is responsible for superconductivity. And it occurs at room temperature, contrary to normal superconductivity, which only occurs at very low temperatures.

The study shows that a YIG spin transistor can be made, and that in the long run this material could even produce a spin superconductor. The beauty of the system is that spin injection and control of spin currents is achieved with a simple DC current, making these spintronic devices compatible with normal electronics. 'Our next step is to see if we can realize this promise', concludes Van Wees.
-end-
Reference: L.J. Cornelissen, J. Liu, R.A. Duine and B.J. van Wees: Spin-current-controlled modulation of the magnon spin conductance in a 3-terminal magnon transistor.Physical Review Letters 2 March 2018.

For background information on the Van Wees lab, see this short video.

University of Groningen

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...