Nav: Home

Practical spin wave transistor one step closer

March 01, 2018

University of Groningen physicists have managed to alter the flow of spin waves through a magnet, using only an electrical current. This is a huge step towards the spin transistor that is needed to construct spintronic devices. These promise to be much more energy efficient than conventional electronics. The results were published on 2 March in Physical Review Letters.

Spin is a quantum mechanical property of electrons. Simply put, it makes electrons behave like small magnetic compass needles which can point up or down. This can be used to transfer or store information, creating spintronic devices that promise several advantages over normal microelectronics.

In a conventional computer, separate devices are needed for data storage (often using a magnetic process) and data processing (electronic transistors). Spintronics could integrate both in one device, so it would no longer be necessary to move information between storage and processing units. Furthermore, spins can be stored in a non-volatile way, which means that their storage requires no energy, in contrast to normal RAM memory. All this means that spintronics could potentially make faster and more energy-efficient computers.

Wave

To realize this, many steps have to be taken and a lot of fundamental knowledge has to be obtained. The Physics of Nano Devices group of physics professor Bart van Wees at the University of Groningen's Zernike Institute of Advanced Materials is at the forefront of this field. In their latest paper, they present a spin transistor based on magnons. Magnons, or spin waves, are a type of wave that only occurs in magnetic materials. 'You can view magnons as a wave, or a particle, like electrons', explains Ludo Cornelissen, PhD student in the Van Wees group and first author of the paper.

In their experiments, Cornelissen and Van Wees generate magnons in materials that are magnetic, but also electrically insulating. Electrons can't travel through the magnet, but the spin waves can - just like a wave in a stadium moves while the spectators all stay in place. Cornelissen used a strip of platinum to inject magnons into a magnet made of yttrium iron garnet (YIG). 'When an electron current travels through the strip, electrons are scattered by the interaction with the heavy atoms, a process that is called the spin Hall effect. The scattering depends on the spin of these electrons, so electrons with spin up and spin down are separated.'

Spin flip

At the interface of platinum and YIG, the electrons bounce back as they can't enter the magnet. 'When this happens, their spin flips from up to down, or vice versa. However, this causes a parallel spin flip inside the YIG, which creates a magnon.' The magnons travel through the material and can be detected with a second platinum strip.

'We described this spin transport through a magnet some time ago. Now, we've taken the next step: we wanted to influence the transport.' This was done using a third platinum strip between injector and detector. By applying a positive or negative current, it is possible to either inject additional magnons in the conduction channel or drain magnons from it. 'That makes our set up analogous to a field effect transistor. In such a transistor, an electric field of a gate electrode reduces or increases the number of free electrons in the channel, thus shutting down or boosting the current.'

Cornelissen and his colleagues show that adding magnons increases the spin current, while draining them causes a significant reduction. 'Although we were not yet able to switch off the magnon current completely, this device does act as a transistor', says Cornelissen. Theoretical modelling shows that reducing the thickness of the device can increase the depletion of magnons enough to stop the magnon current completely.

Superconductivity

But there is another interesting option, explains Cornelissen's supervisor Bart van Wees: 'In a thinner device, it could be possible to increase the amount of magnons in the channel to a level where they would form a Bose-Einstein condensate.' This is the phenomenon that is responsible for superconductivity. And it occurs at room temperature, contrary to normal superconductivity, which only occurs at very low temperatures.

The study shows that a YIG spin transistor can be made, and that in the long run this material could even produce a spin superconductor. The beauty of the system is that spin injection and control of spin currents is achieved with a simple DC current, making these spintronic devices compatible with normal electronics. 'Our next step is to see if we can realize this promise', concludes Van Wees.
-end-
Reference: L.J. Cornelissen, J. Liu, R.A. Duine and B.J. van Wees: Spin-current-controlled modulation of the magnon spin conductance in a 3-terminal magnon transistor.Physical Review Letters 2 March 2018.

For background information on the Van Wees lab, see this short video.

University of Groningen

Related Electrons Articles:

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.