Nav: Home

Common bricks can be used to detect past presence of uranium, plutonium

March 01, 2018

Researchers from North Carolina State University have demonstrated a technique that can determine whether bricks - the common building material - have ever been near a radiological source, and identify the specific type of source, such as high enriched uranium or plutonium. The technique is possible when there are no chemical residues left behind, and has security and nuclear nonproliferation applications.

Robert Hayes, an associate professor of nuclear engineering at NC State and co-author of a paper on this work, previously used simulations to demonstrate the concept that building materials could be used to characterize nuclear material - even after it was no longer there.

But the NC State team has now validated that the technique works for characterizing transuranic radioactive materials, and fine-tuned the technique so that it can be done in days instead of weeks.

"The technique laid out in our paper can take brick samples the size of a thimble and use them to identify whether a radiological source was plutonium, uranium, and so on, even if the source has been removed," says Ryan O'Mara, a Ph.D. student at NC State and first author of the paper.

"That has clear nonproliferation applications. For example, if a facility says that it has not been making high-enriched uranium - the kind used in weapons - you could take a sample from the building itself and determine whether there had been high-enriched uranium on site."

Researchers envision a variety of future applications as well.

The researchers think the technique may also be used to determine whether nuclear facilities are shipping out as many spent "low burnup" fuel rods as they say they are. This is significant because some facilities have secretly diverted a percentage of their low burnup fuel rods for use as feedstock that can be used to create weapons-grade plutonium.

"We're submitting proposals to support that work, as well as work that could help us better assess public exposure in the event of a radiological incident - which would have real value in the context of emergency response," Hayes says. "And we are already working to demonstrate that we can use the technique as a three-dimensional 'gamma camera,' giving us the ability to capture the dimensions of the source or sources."
-end-
The paper, "Dose deposition profiles in untreated brick material," is published in the journal Health Physics. The work was supported by the Department of Energy's National Nuclear Security Administration under award DE-NA0002576. The work was also partially paid for by the Nuclear Regulatory Commission, under grant NRC-HQ?84?14?G?0059. Additional support for this work came through a joint faculty appointment between North Carolina State University and Oak Ridge National Laboratory in coordination with the Office of Defense Nuclear Nonproliferation R&D of the National Nuclear Security Administration-sponsored Consortium for Nonproliferation Enabling Capabilities.

North Carolina State University

Related Uranium Articles:

Not everything is ferromagnetic in high magnetic fields
High magnetic fields have a potential to modify the microscopic arrangement of magnetic moments because they overcome interactions existing in zero field.
Old molecule, new tricks
Fifty years ago, scientists hit upon what they thought could be the next rocket fuel.
Unused stockpiles of nuclear waste could be more useful than we might think
Chemists have found a new use for the waste product of nuclear power -- transforming an unused stockpile into a versatile compound which could be used to create valuable commodity chemicals as well as new energy sources.
Uranium chemistry and geological disposal of radioactive waste
A new paper to be published on Dec. 16 provides a significant new insight into our understanding of uranium biogeochemistry and could help with the UK's nuclear legacy.
Laser-produced uranium plasma evolves into more complex species
When energy is added to uranium under pressure, it creates a shock wave, and even a tiny sample will be vaporized like a small explosion.
Using building materials to monitor for high enriched uranium
A new paper details how small samples of ubiquitous building materials, such as tile or brick, can be used to test whether a facility has ever stored high enriched uranium, which can be used to create nuclear weapons.
Uranium toxicity may be causing high rates of obesity and diabetes in Kuwait
Kuwait has some of the highest rates of obesity and diabetes in the world, and scientists don't know why.
Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy
Scientists have demonstrated a new bio-inspired material for an eco-friendly and cost-effective approach to recovering uranium from seawater.
Searching for lost WWII-era uranium cubes from Germany
In 2013, Timothy Koeth received an extraordinary gift: a heavy metal cube and a crumpled message that read, 'Taken from Germany, from the nuclear reactor Hitler tried to build.
ORNL investigates complex uranium oxides with help from CADES resources
To accelerate the process of identifying novel uranium oxide phases, an ORNL team studied 4,600 different potential crystal structures of uranium oxide compositions on Metis, a CADES high-performance computing cluster.
More Uranium News and Uranium Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.