Nav: Home

Discovery shows wine grapes gasping for breath

March 01, 2018

University of Adelaide researchers have discovered how grapes "breathe", and that shortage of oxygen leads to cell death in the grape.

The discovery raises many questions about the potentially significant impacts on grape and wine quality and flavour and vine management, and may lead to new ways of selecting varieties for warming climates.

"In 2008 we discovered the phenomenon of cell death in grapes, which can be implicated where there are problems with ripening. We've since been trying to establish what causes cell death," says Professor Steve Tyerman, Chair of Viticulture at the University of Adelaide's Waite campus.

"Although there were hints that oxygen was involved, until now we've not known of the role of oxygen and how it enters the berry."

Professor Tyerman and PhD student Zeyu Xiao from the University's Australian Research Council (ARC) Training Centre for Innovative Wine Production have identified that during ripening, grapes suffer internal oxygen shortage. The research was in collaboration with Dr Victor Sadras, South Australian Research and Development Institute (SARDI), and Dr Suzy Rogiers, NSW Department of Primary Industries, Wagga Wagga.

Published in the Journal of Experimental Botany, the researchers describe how grape berries suffer internal oxygen shortage during ripening. With the use of a miniature oxygen measuring probe - the first time this has been done in grapes - they compared oxygen profiles across the flesh inside grapes of Chardonnay, Shiraz and Ruby Seedless table grape.

They found that the level of oxygen shortage closely correlated with cell death within the grapes. Respiration measurements indicated that this would be made worse by high temperatures during ripening - expected to happen more frequently with global warming.

"By manipulating oxygen supply we discovered that small pores on the surface of the berry stem were vital for oxygen supply, and if they were blocked this caused increased cell death within the berry of Chardonnay, essentially suffocating the berry. We also used micro X-ray computed tomography (CT) to show that air canals connect the inside of the berry with the small pores on the berry stem," says Mr Xiao.

"Shiraz has a much smaller area of these oxygen pores on the berry stem which probably accounts for its greater sensitivity to temperature and higher degree of cell death within the berry."

Professor Vladimir Jiranek, Director of the University of Adelaide's ARC Training Centre for Innovative Wine Production, says: "This breakthrough on how grapes breathe will provide the basis for further research into berry quality and cultivar selection for adapting viticulture to a warming climate."
-end-
The study was supported by the Australian Government's Industrial Transformation Research Program with support from Wine Australia and industry partners.

Media Contact:

Professor Steve Tyerman, Chair of Viticulture, University of Adelaide. Phone: +61 (8) 8313 6663, Mobile: +61 (0) 411 776 050, steve.tyerman@adelaide.edu.au

Zeyu Xiao, PhD candidate, School of Agriculture, Food and Wine, University of Adelaide. Mobile: +61 (0) 415 134 595, zeyu.xiao@adelaide.edu.au

Robyn Mills, Media Officer, University of Adelaide. Phone: +61 (0)8 8313 6341, Mobile: +61 (0)410 689 084, robyn.mills@adelaide.edu.au

University of Adelaide

Related Cell Death Articles:

How trans fats assist cell death
Tohoku University researchers in Japan have uncovered a molecular link between some trans fats and a variety of disorders, including cardiovascular and neurodegenerative diseases.
Bacteria can 'outsmart' programmed cell death
To be able to multiply, bacteria that cause diarrhoea block mediators of programmed cell death, a new study in 'Nature Microbiology' shows.
Breaking the dogma: Key cell death regulator has more than one way to get the job done
Immunologists from St. Jude Children's Research Hospital have revealed two independent mechanisms driving self-defense molecules to trigger cell death.
Cell death or cancer growth: A question of cohesion
Activation of CD95, a receptor found on all cancer cells, triggers programmed cell death -- or does the opposite, namely stimulates cancer cell growth.
Cell death blocker prevents healthy cells from dying
Researchers have discovered a proof-of-concept drug that can prevent healthy cells from dying in the laboratory.
Road to cell death mapped in the Alzheimer's brain
Scientists have identified a new mechanism that accelerates aging in the brain and gives rise to the most devastating biological features of Alzheimer's disease.
Preventing cell death as novel therapeutic strategy for rheumatoid arthritis
A collaborative study by research groups from the University of Cologne, VIB, Ghent University, the Βiomedical Sciences Research Center 'Alexander Fleming' in Athens and the University of Tokyo identified a new molecular mechanism causing rheumatoid arthritis.
Atherosclerosis: Induced cell death destabilizes plaques
Many chronic disorders arise from misdirected immune responses. A Ludwig-Maximilians-Universitaet (LMU) in Munich team led by Oliver Söhnlein now shows that neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death and that a tailored peptide inhibits the process.
Cell death may be triggered by 'hit-and-run' interaction
A 'hit-and-run' interaction between two proteins could be an important trigger for cell death, according to new research from Walter and Eliza Hall Institute researchers.
How a mitochondrial enzyme can trigger cell death
Cytochrome c is a small enzyme that plays an important role in the production of energy by mitochondria.
More Cell Death News and Cell Death Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.