Nav: Home

Reducing a building's carbon output can also lower costs

March 01, 2018

Researchers from Concordia University's Department of Building, Civil and Environmental Engineering have found a way to significantly reduce carbon emissions produced by residential and non-residential buildings, while also cutting costs.

Heating, cooling, and powering hospitals, hotels, city halls, apartment complexes and other large buildings that share built energy systems makes for a complex and potentially costly climate-change problem.

Add to this the challenges posed by Canada's climate and size -- especially in the Far North where remote communities are located considerable distances from the power grid.

In 2014, Canadian homes and buildings contributed nearly a fifth of Canada's total greenhouse gas emissions.

"It often feels like we have to choose between our financial constraints and using more energy-efficient measures," says Mohammad Sameti, a PhD candidate in Building Engineering at Concordia.

"But what our method shows is that we can efficiently integrate a given system to positively affect both."

To reduce overall energy consumption, Sameti and Fariborz Haghighat, professor in the Department of Building, Civil, and Environmental Engineering and Tier 1 Concordia Research Chair in Energy and Environment, developed a way to optimize the integration of multiple systems across multiple buildings.

They looked at a grid of eight residential buildings with a variety of characteristics, operating costs and technical constraints to arrive at an energy-efficient and cost-effective usage pattern. The researchers used hydro-powered heat pumps and lake cooling -- which uses large bodies of naturally cold water as heat sinks -- as renewable energy sources in their simulations.

After running all possible variations, the team found that by prioritizing the reduction of carbon emissions, they could cut costs by 75 per cent while also reducing emissions by 59 per cent.

However, when they prioritized overall costs instead, it resulted in savings of just 38 per cent, but carbon emissions were much higher. "To optimize cost, we had to prioritize systems that burn fossil fuels. These technologies are cheaper to install and operate than the renewable energy models, but offer no reduction in emissions," explains Sameti.

"Renewable energy sources used in the optimal simulation create a net-zero energy usage by the network, removing the need to rely on traditional heating and cooling technologies with higher emissions, and draw less power from the grid."

For Canada's northern communities, optimizing energy usage in this manner offers the chance to integrate technologies better suited to their remote locations far from the power grid and fossil-fuel supplies.

The researchers' findings were published in December by the journal Applied Energy.

The virtual model tested by Haghighat and Sameti considered multiple renewable and non-renewable energy sources.

They also had to consider issues within the grid -- for example, the age of buildings or how their energy use can change at different times or during different seasons.

"Because of the complexity of the problem and the large number of decision variables involved, we needed to run all possible variables," said Haghighat.

They demonstrated that a significant reduction in carbon emissions is possible without changing all systems in all buildings in a grid -- a process that has to happen slowly with periodic investment in new equipment.

As a result, their methodology can be applied as changes are made to a system over time.

This research aims to further lower both carbon emissions and overall costs by optimal integration and sizing of energy storage systems (both thermal and electrical) into the community. The ultimate goal will be the successful optimization of a net-zero energy district (nZED).

To make widespread adoption of their methods a reality, Sameti and Haghighat are hard at work on expanding its application to ever more complex networks.
Their research project was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Concordia University

Related Carbon Emissions Articles:

Global supply chains as a way to curb carbon emissions
The coronavirus outbreak raised everyone's awareness of the significance of global supply chains to modern economies.
Scrubbing carbon dioxide from smokestacks for cleaner industrial emissions
An international collaboration co-led by an Oregon State University chemistry researcher has uncovered a better way to scrub carbon dioxide from smokestack emissions, which could be a key to mitigating global climate change.
Global carbon emissions increase but rate has slowed
Global carbon emissions are set to grow more slowly in 2019, with a decline in coal burning offset by strong growth in natural gas and oil use worldwide -- according to new research.
Co-combustion of wood and oil-shale reduces carbon emissions
Utilization of fossil fuels, which represents an increasing environmental risk, can be made more environmentally friendly by adding wood -- as concluded based on the preliminary results of the year-long study carried out by thermal engineers of Tallinn University of Technology.
Arctic shifts to a carbon source due to winter soil emissions
A NASA-funded study suggests winter carbon emissions in the Arctic may be adding more carbon into the atmosphere each year than is taken up by Arctic vegetation, marking a stark reversal for a region that has captured and stored carbon for tens of thousands of years.
China's carbon emissions growth slows during new phase of economic development
Scientists from from the Academy of Mathematics and Systems Science, together with collaborators, recently revealed that China's annual carbon emissions growth declined significantly from 10% during the 2002-2012 period to 0.3% during the period from 2012-2017.
Study: Carbon emissions soar as tourism reaches new heights
A researcher at The University of Texas at San Antonio (UTSA) is examining how the flight routes people take to get to tourist destinations impact the amount of pollution in the air in a newly published study he coauthored in the Annals of Tourism Research.
Plants could remove six years of carbon dioxide emissions -- if we protect them
By analysing 138 experiments, researchers have mapped the potential of today's plants and trees to store extra carbon by the end of the century.
How buildings can cut 80% of their carbon emissions by 2050
Energy use in buildings -- from heating and cooling your home to keeping the lights on in the office -- is responsible for over one-third of all carbon dioxide (CO2) emissions in the United States.
Wood products mitigate less than 1% of global carbon emissions
The world's wood products -- all the paper, lumber, furniture and more -- offset just 1% of annual global carbon emissions by locking away carbon in woody forms, according to new University of Wisconsin-Madison research.
More Carbon Emissions News and Carbon Emissions Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at