The sneaky way estrogen drives brain metastasis in non-estrogen-dependent breast cancers

March 01, 2019

Triple-negative breast cancers are more likely than other breast cancer types to metastasize and are especially likely to go the brain in younger women. Researchers have tested various hypotheses to explain this danger. One idea that has gotten little attention is the thought that estrogen might be to blame. After all, triple negative breast cancers lack estrogen receptors (along with progesterone receptors and HER2, thus the name triple negative), and so these cancers can't possibly be influenced by estrogen. Right?

Now a University of Colorado Cancer Center study published in the journal Oncogene shows that while estrogen doesn't directly affect triple-negative breast cancer cells, it can affect surrounding brain cells in ways that promote cancer cell migration and invasiveness. Importantly, the study also suggests ways to stop the activity of estrogen in the brain that fertilizes triple-negative breast cancer metastasis.

"The cancer cells aren't responsive to estrogen, but estrogen influences the microenvironment. We found that astrocytes - one of the main components of the microenvironment in the brain - are estrogen-responsive. When they are stimulated with estrogen, they produce chemokines, growth factors, and other things that promote brain metastasis," says Diana Cittelly, PhD, investigator at CU Cancer Center and assistant professor in the CU School of Medicine Department of Pathology.

Technically, Cittelly and colleagues including postdoctoral researcher, Maria Contreras-Zarate, PhD, found that estrogen induces astrocytes (brain cells) to produce growth factors called brain-derived neurotrophic factor (BDNF) and Epidermal Growth Factor (EGF), and that these factors turns on two genetic migration/invasion switches in cancer cells, namely TRKB and EGFR.

"This may explain why breast cancers diagnosed in younger women are more likely to metastasize to the brain - pre-menopausal women have more estrogen, and it may be influencing the microenvironment of the brain in ways that aid cancer," Cittelly says.

Traditionally, estrogen-positive cancers have been treated with anti-estrogen receptor therapies including tamoxifen. However, it has always seemed obvious that cancers without estrogen receptors would not respond to anti-estrogen receptor therapy. And, unfortunately, there has been little opportunity to accidentally notice the effects of anti-estrogen therapy on brain metastases resulting from breast cancer.

"Historically, women with brain mets have been excluded from clinical trials due to overall poor prognosis," says Cittelly, pointing out that earning approval for a new drug requires showing its effectiveness, and even a promising drug may seem ineffective in patients whose cancer has already metastasized to the brain. "So we have never explored whether anti-estrogens will have benefit for these women. Our work shows there might be a benefit in anti-estrogen therapies in preventing brain metastasis in women with triple-negative breast cancer."

Additionally, Cittelly and colleagues recently received funding to explore interceding elsewhere in this chain of action that starts with estrogen and ends with brain metastasis. Basically, if estrogen works through EGFR or TRKB, it may be useful to inhibit EGFR and/or TRKB, alone or together, in these patients. Fortunately, like estrogen-receptor inhibitors, EGFR and TRK inhibitors already exist and are in use with other cancers, making testing these strategies dramatically more feasible.

"We are finally beginning to recognize the unique role of the microenvironment in the brain," Cittelly says. "Cancer metastasis may not depend on cancer cells alone. Stopping metastasis in these patients may require looking at the conditions of tissues that surround and support cancers."

University of Colorado Anschutz Medical Campus

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to