UI Researcher Finding Ways To Make Cochlear Implants Better Mimic Normal Hearing

March 01, 1999

IOWA CITY, Iowa -- Although cochlear implants have opened up the world of sound for many individuals with profound hearing loss or deafness, the devices fall short of replicating the normal hearing process.

But that could soon change.

Using a computer model, Jay Rubinstein, M.D, Ph.D., a University of Iowa assistant professor of otolaryngology, and physiology and biophysics, has found a way to better mimic the natural spontaneous activity of the normal cochlea, which could lead to improved hearing for people who rely on cochlear implants.

Rubinstein, who figured out how to reprogram existing devices, soon will begin trials on qualified UI Hospitals and Clinics' patients already implanted with cochlear devices. An initial test of a reprogrammed implant in a North Carolina patient provided promising data, Rubinstein said. The UI Research Foundation has applied for a patent for Rubinstein's strategy.

"While much work remains to be done in humans, our laboratory studies suggest that substantial improvements in all types of sound coding may be possible, even with the limitations of currently implanted devices," Rubinstein said.

In normal hearing, sound waves excite the hair cells in the ear. These cells then convert the sound into an electrical signal that stimulates the primary auditory neurons to send the information from the inner ear's cochlea to the auditory brain stem. The hearing process is impaired in people who have lost some hair cells. Those with no hair cells at all are deaf because the hearing process cannot even start.

A cochlear implant is an electronic device that a doctor surgically places in a deaf person's cochlea. The device, which receives signals from a processor worn outside the body, acts as the hair cells, converting acoustic information into electrical signals that can be transmitted to the brain and perceived as sound.

Although the cochlear implant is supposed to mimic the normal hearing process, the electrically stimulated auditory neuron responses are substantially different from acoustically stimulated responses in the normal hearing ear. The device's electrical stimulation produces highly synchronized activity across all the neurons, meaning the response is the same for all the neurons. Acoustic stimulation produces much less across-neuron synchrony, meaning each neuron's response is independent. This independence allows for much richer, more detailed sound.

Rubinstein wanted to find a way to recreate the desynchronized, natural process of normal acoustic stimulation. By increasing the rate of the signal pulses from the external processor, Rubinstein, in his model, was able to produce more independent neuron activity. Animal studies performed at the UI support the predictions of Rubinstein's calculations. Individuals involved in the animal studies included Paul Abbas, Ph.D. professor of otolaryngology, and speech pathology and audiology; Charles Miller, Ph.D., assistant research scientist in the Department of Otolaryngology; and Akihiro Matsuoka , M.D., Ph.D., research assistant in the Department of Otolaryngology.

Earlier work performed by Blake Wilson at the Research Triangle Institute in North Carolina, a close collaborator with the UI Cochlear Implant Clinical Research Center, suggested that coding speech at high signal rates would reduce neural synchronization.

"Our work demonstrated precisely how those beneficial effects could be exploited to partially mimic the function of the normal auditory system," Rubinstein said.

If upcoming human trials are successful, a limited version of the new speech processing strategy is possible using currently implanted devices. These improved versions could be available to UI research subjects within months, Rubinstein said. U.S. Food and Drug Administration approval would be necessary prior to more widespread use. A complete implementation of the algorithm is beyond the capabilities of even the most sophisticated cochlear implants available today but will be possible using devices that the manufacturers will make available in the next few years, Rubinstein said.
-end-


University of Iowa

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.