What the eye doesn't see

March 02, 2005

The first experimental evidence that birds can be deceived by camouflage in the same way that humans are deceived, is published today in Nature [3 March 2005].

The idea that bold contrasting colours help to break-up the body's outline was rapidly adopted by many armies as long ago as the First World War. And in biology this idea of 'disruptive colouration' has long been used to explain how insects such as moths conceal themselves from predators, shaping the evolution of protective coloration in insects.

Innovative research from the University of Bristol provides the strongest evidence to date that disruptive patterns do indeed protect insects from detection by birds, the predator most likely to have shaped the evolution of protective coloration in insects.

Professor Innes Cuthill and his team pinned artificial 'moths' to trees in a field with a dead mealworm attached. The 'moths' were triangular pieces of waterproof card with specific patterns printed on them. By varying the colours, size and location of patterns on the moths the team were able to mimic real tree characteristics and identify which pattern combinations were the most successful.

Professor Innes Cuthill said: "The rate at which mealworms were eaten by birds gives a measure of how effective each combination was at preventing detection by a predator. Combinations that gave a better disguise took longer to be seen, and it therefore took longer for the mealworms to be eaten."

This research provides the first evidence that patterns which deceive humans operate in a similar way to those in non-human predators such as birds.
-end-


University of Bristol

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.