Fish extinctions alter critical nutrients in water, study shows

March 02, 2007

Ecosystems are such intricate webs of connections that few studies have been able to explore exactly what happens when a species dies out.

Now, a Cornell study using computer simulations has teased out how the disappearance of a freshwater fish can affect the availability of certain nutrients that other species rely on.

Algae, at the base of the food chain, for example, rely on fish to cycle back into the water such nutrients as nitrogen and phosphorus, which are otherwise locked up in animal or plant cells. Fish excrete dissolved nutrients back into the water, making them available to algae, which need them to grow.

The study, published in the Feb. 27 issue of the Proceedings of the National Academy of Sciences, finds that overfishing could threaten the overall health of an ecosystem because it targets important fish species that play major roles in recycling nutrients. In fact, 20 percent of fish species accounted for more than half of all the recycled nutrients in the ecosystems studied, the computer simulations found.

"The loss of the most heavily fished species led to the fastest declines in nutrient recycling," said lead author Peter McIntyre, a postdoctoral researcher at Wright State University who was a graduate student in Cornell's Department of Ecology and Evolutionary Biology when he conducted the study. "Fishermen are targeting relatively large and abundant species that happen to play a major role in nutrient recycling."

The simulations, which relied on data from Rio Las Marias, a Venezeulan river, and Lake Tanganyika, a massive lake bordering Tanzania, Zaire, Zambia and Burundi, also shed light on the roles that surviving species might play in replacing the lost nutrients. In both ecosystems studied, when surviving species successfully picked up the slack in nutrient recycling left by an extinct species, nitrogen and phosphorus were maintained at 80 percent of their starting values until over half the total number of species were lost.

Studies of complex ecosystems, especially those involving large, highly mobile fish, are almost impossible to carry out in the wild, but new methods are helping researchers better understand these systems.

"Computer simulations provide a means to assess patterns of species loss in a system in which we just cannot do complex experiments," said co-author Alex Flecker, Cornell associate professor of ecology and evolutionary biology, who served as McIntyre's adviser. "But we have to be aware that there is a whole set of assumptions that goes into simulating species loss."

For example, it is unknown whether surviving species can truly compensate for extinctions. In a study of two species of fish in the Venezuelan river that eat mud from the river bottom, Flecker found that the rarer of the two species was unable to make up for the loss of the more common one. Thus, it appears that human overfishing of the common species, coporo (Prochilodus mariae), may have large effects on the ecosystem, in part because of its large contribution to nitrogen recycling.

The current study also revealed that species that heavily recycle nitrogen are not always the same ones that recycle the most phosphorus. These differences would make it difficult for conservationists to prioritize species to protect.
-end-
The study was funded by the National Science Foundation and the Cornell Program in Biogeochemistry and Environmental Biocomplexity.

Cornell University

Related Nitrogen Articles from Brightsurf:

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules.

Illinois research links soil nitrogen levels to corn yield and nitrogen losses
What exactly is the relationship between soil nitrogen, corn yield, and nitrogen loss?

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.

A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.

How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.

Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.

Read More: Nitrogen News and Nitrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.