Adult stem cell changes underlie rare genetic disease associated with accelerated aging

March 02, 2008

Adult stem cells may provide an explanation for the cause of a Hutchinson-Gilford Progeria Syndrome (HGPS), a rare disease that causes premature aging in children, according to researchers at the National Cancer Institute (NCI), part of the National Institutes of Health (NIH). These findings, the first to indicate a biological basis for the clinical features of HGPS, also known as progeria, may also provide new insights into the biological mechanisms of normal aging. The results were published in the March, 2008, issue of Nature Cell Biology.

"Studies like this of the biology of HGPS hold the potential to benefit children suffering this terrible illness and enlighten us as to the medical changes we all experience as we grow older." said NCI Director John E. Niederhuber, M.D. "As our population ages, we have an increasing need for greater understanding of the biology of aging and age-related illness, such as cancer."

HGPS is an extremely rare hereditary genetic disease of children characterized by signs of premature aging. Children with HGPS generally experience the first symptoms by the age of one, and on average succumb around the age of 15, almost exclusively from premature, progressive heart disease. HGPS occurs in one out of four to eight million births; only 100 patients have been documented in the medical literature. Because its striking cardiovascular effects and other clinical features are so closely associated with the normal aging process, HGPS holds great interest for researchers studying age-related biological changes and disease.

The cause of HGPS, a mutated protein called progerin, was identified in 2003. However, the mechanism by which progerin causes the widespread clinical effects of HGPS has been unclear. To forge this link between molecular biology and medical outcome, Tom Misteli, Ph.D., head of the Cell Biology of Genomes Group at NCI's Center for Cancer Research (CCR), and CCR staff scientist Paola Scaffidi, Ph.D., examined the effects of progerin on gene expression in a laboratory model of HGPS. They found that progerin activates genes involved in the Notch signaling pathway, a major regulator of stem cell differentiation -- the process by which stem cells give rise to the mature cells that make up different tissues.

Because most of the tissues affected by HGPS (e.g., skin, fat, muscles, bone, and blood vessels) arise from a common developmental pathway, Misteli and Scaffidi looked at the effects of progerin on adult mesenchymal stem cells, the common cellular ancestor of these tissue types. An adult stem can renew itself, and can differentiate to yield the major specialized cell types of the tissue or organ. Their experiments revealed that progerin profoundly affects the fate of these stem cells, greatly skewing the rate at which they mature into different tissues. For instance, progerin-producing stem cells showed accelerated maturation into bone but failed to develop into fat. This could explain two of the distinguishing clinical features of HGPS: abnormal bone growth and an almost complete loss of the fatty tissues normally found just beneath the skin. The researchers were able to mimic the progerin's effects in these stem cells by experimentally activating the same components of the Notch pathway targeted by progerin.

Taken together, the results of these experiments provide a new window into the biology behind the clinical features of HGPS. They may also hold relevance for understanding the biology of normal aging. "Progerin is present at low levels in the cells of healthy people," said Misteli. "One could envision a scenario in which progerin's effects on the Notch pathway and, by extension, on adult stem cells could, over time, lead to many of the tissue changes we commonly associate with the aging process."
-end-
Scaffidi P and Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated aging. Nature Cell Biology, March 2008.

For more information on Misteli's laboratory, please go to http://ccr.nci.nih.gov/staff/staff.asp?profileid=5819.

For more information about cancer, please visit the NCI Web site at http://www.cancer.gov, or call NCI's Cancer Information Service at 1-800-4-CANCER (1-800-422-6237).

NIH/National Cancer Institute

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.