Nav: Home

Study explores how high-fat diet influences colon cancer

March 02, 2016

BOSTON (March 2, 2016) - A study published today in Nature reveals how a high-fat diet makes the cells of the intestinal lining more likely to become cancerous. It joins a growing body of research that finds obesity and eating a high-fat, high-calorie diet are significant risk factors for many types of cancer.

The new study of mice suggests that a high-fat diet drives a population boom of intestinal stem cells and also generates a pool of other cells that behave like stem cells -- that is, they can reproduce themselves indefinitely and differentiate into other cell types, says co-lead author Semir Beyaz, a Harvard Medical School PhD student affiliated with the laboratories of Stuart Orkin, MD, of Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Omer Yilmaz, MD, PhD, of MIT. These stem cells and "stem-like" cells are more likely to give rise to intestinal tumors.

The Nature paper builds on previous research that found people who are obese are at greater risk of developing colorectal cancer. Previous research has also shown that intestinal stem cells, which last a lifetime, are the cells most likely to accumulate the mutations that give rise to colon cancer. These stem cells live in the lining of the intestine, known as the epithelium, and generate all of the different cell types that make up the epithelium.

Beyaz and his colleagues, working under study leader Yilmaz, investigated a possible link between these stem cells and obesity-linked cancer by feeding healthy mice a diet made up of 60 percent fat for 9-12 months. A typical American diet usually contains 20-40 percent fat. Mice on the high-fat diet gained 30 to 50 percent more body mass and developed more intestinal tumors than the mice fed a normal diet.

Mice on the high-fat diet also showed distinctive changes in their intestinal stem cells. Not only did they have many more intestinal stem cells than mice on the normal diet but the stem cells were also able to operate without input from neighboring cells, the researchers discovered.

"The epidemiological link between a high-fat diet and colorectal cancer has been reported for many years, but the underlying mechanisms were not known," Beyaz said. "Our study for the first time showed the precise mechanisms of how a high-fat diet regulates intestinal stem cell function and how this regulation contributes to tumor formation."

When the intestinal stem cells were removed from the mice and grown in a culture dish, they gave rise to "mini-intestines" much more readily than intestinal stem cells from mice on a normal diet. The researchers also found that another population known as progenitor cells -- differentiated daughter cells of stem cells -- started to behave like stem cells: They began to live much longer than their usual lifespan of a few days, and they, too, could generate mini-intestines when grown outside of the body.

"This is really important because it's known that stem cells are often the cells in the intestine that acquire the mutations that go on to give rise to tumors," Yilmaz said. "Not only do you have more of the traditional stem cells (on a high-fat diet), but now you have non-stem-cell populations that have the ability to acquire mutations that give rise to tumors."

Yilmaz, an assistant professor of biology and member of MIT's Koch Institute for Integrative Cancer Research, and David Sabatini, MD, PhD, an MIT professor of biology and member of the Whitehead Institute, are senior authors of the study. In addition to Beyaz, MIT post-doctoral student Miyeko Mana and MIT visiting scientist Jatin Roper are lead authors.

The researchers also identified a nutrient-sensing pathway that is hyperactivated by the high-fat diet. The fatty acid sensor, known as PPAR-delta, responds to high levels of fat by turning on a metabolic process that enables cells to burn fat as an energy source instead of their usual carbohydrates and sugars. PPAR-delta also appears to turn on a set of genes that are important for stem cell identity. Yilmaz's lab is now investigating how this happens in hopes of identifying possible cancer drug targets for tumors that arise in obesity.
-end-
The research was supported by the Howard Hughes Medical Institute, Ellison Medical Foundation, National Institutes of Health, Department of Defense, Center for the Study of Inflammatory Bowel Diseases at Massachusetts General Hospital, Kathy and Curt Marble Cancer Research Fund, American Federation of Aging Research, and V Foundation for Cancer Research.

Dana-Farber Cancer Institute

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".