Nav: Home

Chemical snapshot unveils path to greener biofuel

March 02, 2016

Vehicle fuels made of plant waste are sustainable and climate friendly. Unfortunately the energy in stems, bark and twigs is locked up in cellulose, which is tough to crack open by the enzymes used to transform cellulose into sugar, which can then be fermented into alcohol.

One family of enzymes, lytic polysaccharide monooxygenases (LPMOs), ease the transformation of cellulose. They are the way forward. Chemists at the University of Copenhagen have now taken a leap ahead in understanding how LPMOs work by showing how these enzymes bind to cellulose. This can be incredibly important for, among other things, the development and production of sustainable biofuels.

Kristian Frandsen is a PhD student at the University of Copenhagen's Department of Chemistry. Together with Associate Professor Lo Leggio and Laboratory Manager Jens-Christian Navarro Poulsen, he is part of CESBIC, an international research consortium that includes the Danish company Novozymes and others. Today, the research team will have their article 'The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases'published in the prestigious journal Nature Chemical Biology.

In large part, plant waste consists of cellulose, an energy rich polymer made up of sugar (glucose), bound together in chains. Glucose is fermented into alcohol that can be used as fuel. Kristian Frandsen, the article's first author, explains that LPMO eases the path to cellulose for other enzymes, thus making it easier for them to ultimately break the cellulose down. Indeed, understanding the mechanics of this process is crucial.

"We are the first ones to get a picture of an LPMO in the first stage of the breakdown process, and in high resolution no less. Combined with our colleagues' biochemical and spectroscopic insights, the entire team of researchers has been able to attain a detailed appreciation of the chemical mechanisms. That is, how the enzyme is able to hack away at cellulose at the sub-atomic level." Frandsen hopes that these insights will make it easier to optimise production of new and even more effective enzymes. "Additionally, the project has provided me with contact to many international experts," says Frandsen.

Frandsen's PhD supervisor, Associate Professor Lo Leggio, refers to the work as a breakthrough. While the first LPMOs were identified at the end of the 1990's, they were first suspected to be glycoside hydrolases, a type of enzyme that breaks bonds using water molecules. It was later discovered that these enzymes used oxygen (known as oxidation). At the same time, it was also discovered that a copper ion was essential to the process.

"We had known what the enzymes looked like on their own for quite some time. This knowledge was important as form controls function. But many in the LPMO field consider the understanding of how LPMOs bind to cellulose as some sort of "Holy Grail". Without that knowledge, it is impossible to understand the details of what controls the reaction. With X-ray crystallography, we have now been able to take a few snapshots in crystals of LPMOs that were soaked with bits of cellulose, allowing us to witness detail at the atomic level," explains Lo Leggio.

The UCPH researchers have used X-ray crystallography to shed light on the LPMO enzymes' interaction with cellulose. In order to do this, the cellulose fragments needed to be bound into crystals of the enzyme. Jens-Christian Navarro Poulsen, the group member responsible for the crystallization laboratory, explains:

"Our group had already conducted unsuccessful attempts with other LPMOs to create a crystal in which the substrate, cellulose, was bound. And we know that many other groups have conducted similar experiments. Therefore, it was a great moment when we received the good news from Kristian that cellulose fragments were apparent in the structure," says Poulsen.

The vital X-ray experiments were conducted at the MAXlab in Lund, Sweden and at the ESRF facility in Grenoble, France.

In addition to UCPH's Department of Chemistry and Novozymes, the company that identified and produced the enzyme for the experiments, the partners of the international consortium are the University of Cambridge, Aix-Marseille Université and the University of York.

Faculty of Science - University of Copenhagen

Related Enzymes Articles:

Fungal enzymes team up to more efficiently break down cellulose
Cost-effectively breaking down bioenergy crops into sugars that can then be converted into fuel is a barrier to commercially producing sustainable biofuels.
How enzymes communicate
Freiburg scientists explain the cell mechanism that transforms electrical signals into chemical ones.
Pac-Man-like CRISPR enzymes have potential for disease diagnostics
UC Berkeley researchers have found 10 new variants of the Cas13a enzyme, the Pac-Man of the CRISPR world, that hold promise for disease diagnostics.
Hydrogen production: This is how green algae assemble their enzymes
Researchers at Ruhr-Universit├Ąt Bochum have analyzed how green algae manufacture complex components of a hydrogen-producing enzyme.
New studies unravel mysteries of how PARP enzymes work
A component of an enzyme family linked to DNA repair, stress responses, and cancer also plays a role in enhancing or inhibiting major cellular activities under physiological conditions, new research shows.
Understanding enzymes
A new tool can help researchers more accurately identify enzymes present in microbiomes and quantify their relative abundances.
Light powers new chemistry for old enzymes
Princeton researchers have developed a method that irradiates biological enzymes with light to expand their highly efficient and selective capacity for catalysis to new chemistry.
Research finds enzymes essential for DNA repair
Scientists at The Australian National University and Heidelberg University in Germany have found an essential component in the DNA repair process which could open the door to the development of new cancer drugs.
New step towards clean energy production from enzymes
Oxygen inhibits hydrogenases, a group of enzymes that are able to produce and split hydrogen.
Genetic diversity of enzymes alters metabolic individuality
Scientists from Tohoku University's Tohoku Medical Megabank Organization have published research about genetic diversity and metabolome in Scientific Reports.

Related Enzymes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".