Nav: Home

McMaster University awarded more than $2.3 million for projects that grow economy

March 02, 2016

Seven McMaster researchers have been awarded more than $2.3 million from the Natural Sciences and Engineering Research Council (NSERC) to work with industry to grow the economy and create jobs.

Ray LaPierre, professor and chair of the Department of Engineering Physics, is one of only two researchers in the country to garner two Strategic Partnership Grants from NSERC: one for a project that will develop more efficient solar cells, the other to advance the field of infrared photodetection.

LaPierre envisions a world where sunny skies turn solar panels the darkest of blacks, and people can use their cell phone as infrared cameras to scan their homes for heat loss. Central to LaPierre's research program are nanowires, structures whose diameter is 1/1000th the size of a human hair.

Those bluish solar panels we see in farmer's fields convert only 15 to 20 per cent of solar energy into electricity. Ideally, those panels should be black - absorbing as much sunlight as possible, rather than losing as much as 30 per cent to reflection.

"The central challenge in photovoltaic (solar cell) design is to bridge the gap between efficiency and cost. The nanowires developed in my lab have much higher efficiencies due to their superior light absorption and their ability to convert as much as 30 to 40 per cent more solar energy to electricity," says LaPierre.

The Nanowire photovoltaics project was awarded $420,000 and partners with solar technology company Morgan Solar. LaPierre was also the recipient of a $476,000 grant to use nanowires for the project: A new platform for semiconductor manufacturing with an emphasis in multi-spectral infrared cameras with industry partner Teledyne Dalsa.

The technology will be invaluable in the areas of infrared scanning to detect faults or defects in manufacturing processes, capture more information with astronomical cameras and telescopes, ensure automotive safety, as well as improve surveillance, search and rescue, and defense applications.

Allison Sekuler, interim vice-president of research says "NSERC's Strategic Partnership program states clearly that they are looking for transformative technologies. McMaster's five successful research projects affirm our University is at the vanguard of research in the critically important areas of materials, advanced manufacturing and biomedical engineering. The projects awarded will be making a difference in the lives of Canadians in as little as three year's time."

At today's announcement, Kirsty Duncan, Minister of Science said: "On behalf of the Government of Canada, I would like to congratulate all of today's recipients. This support represents a big investment in connecting our country's talented scientists and engineers with industry."

Chemical engineers Todd Hoare and David Latulippe will use their $370,300 award to leverage the combined expertise of Hoare's lab (bioactives delivery and tissue engineering) with Latulippe's lab (bioseparations and environmental adsorption technologies) in partnership with Canadian biotechnology company Ceapro and their novel processing technique. Their project Development and application of highly tunable porous biopolymer and smart polymer scaffolds using pressurized gas expanded liquids will improve delivery of drugs and agricultural chemicals, generate 3D cell scaffolds maintaining high cell viability, generate low-cost alternatives for purification of antibodies and viruses, improve methods of removing heavy metal ions from industrial waste water, and enhance the capture of carbon dioxide from polluted air.

Michael Brook, professor, chemistry & chemical biology is leading Reactive Silicone Inks for 3-D Printing Using Microfluidic Mixers. The project was awarded $549,500 to develop rapidly curing silicone inks that can be printed directly from current 4-colour inkjet printers. The project combines Brook's synthetic expertise with the microfluidic expertise of mechanical engineer Ravi Selvaganapathy, in partnership with three companies: Structur3d Printing, Silcotech and Siltech. These reactive inks will be used as surface treatments of existing devices based on silicone or other materials, ranging from contact lenses to computer keyboard springs.

Gillian Goward, associate professor, chemistry & chemical biology has been awarded $567,780 for the project High resolution in situ imaging and inverse modeling of lithium batteries. Working with Bartosz Protas, professor, mathematics & statistics and industry partners General Motors Canada and Bruker Biospin Canada, Goward will develop novel experimental methods for characterizing transport in lithium ion battery electrolytes, and model the performance of the electrolytes under a range of conditions that mimic real-world driving conditions. This research program aims to increase the rate of adoption of electric vehicle technology in the mass consumer market, which can only be achieved with increased Lithium-Ion battery performance reliability, which relies directly on accurate modeling.
-end-


McMaster University

Related Solar Energy Articles:

Air pollution casts shadow over solar energy production
Global solar energy production is taking a major hit due to air pollution and dust.
Freshwater from salt water using only solar energy
A federally funded research effort to revolutionize water treatment has yielded a direct solar desalination technology that uses energy from sunlight alone to heat salt water for membrane distillation.
New technology will enable properties to share solar energy
New technology will enable properties to share solar energy and will mean low energy bills for consumers.
Solar paint offers endless energy from water vapor
Researchers in Melbourne, Australia, have developed a compound that draws moisture from the air and splits it into oxygen and hydrogen.
Solar cell design with over 50 percent energy-conversion efficiency
Solar cells convert the sun's energy into electricity by converting photons into electrons.
Bio-inspired energy storage: A new light for solar power
Inspired by the western Swordfern, a groundbreaking prototype could be the answer to the storage challenge still holding solar back as a total energy solution.
The economic case for wind and solar energy in Africa
To meet skyrocketing demand for electricity, African countries may have to triple their energy output by 2030.
The beating heart of solar energy
Using solar cells placed under the skin to continuously recharge implanted electronic medical devices is a viable one.
How plants manage excess solar energy
Life on earth largely depends on the conversion of light energy into chemical energy through photosynthesis by plants.
New maps show where to generate solar energy in South Carolina
Amanda Farthing and the team at Clemson University created maps showing which lands in South Carolina would be most suitable for generating solar energy at utility scale.

Related Solar Energy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.