Nav: Home

Recoupling crops and livestock offers energy savings to Northeast dairy farmers

March 02, 2016

For Pennsylvania dairy farmers, producing feed grain on-farm requires significantly less energy than importing it from the Midwest, according to Penn State researchers whose findings may help dairy farmers save energy and money in the face of rising feed costs.

Historically, it made economic sense for many dairy farmers in the Northeast to import feed from the Midwest, where yields are higher and subsidies contribute to a relatively cheap and abundant supply. However, this separation of cows -- and their manure -- from feed-crop production results in a regional nutrient imbalance with important energy implications. Grain prices can also be volatile, with much higher costs in some years.

"If you think about the Midwestern practices for growing feed crops, largely it's done with synthetic nitrogen fertilizers, which are extremely energy-intensive to produce," said Glenna Malcolm, former research associate in plant sciences now a lecturer in biology. "We wanted to understand the energy use that this approach requires compared to growing feed on-farm, where that fertilizer requirement can be met, in part, with manure and through diversifying crop rotations to include perennial legume crops that convert atmospheric nitrogen to a usable form for plants."

Malcolm and her colleagues compared the energy use of three farming systems. On the low-import end was a dairy cropping systems designed to meet the forage, feed and fuel needs of a 65-cow, 240-acre dairy farm. Computer models simulated the milk production based on actual crop yields and quality analyses. The researchers reported their results in a recent issue of Agriculture, Ecosystems and Environment.

Using farm-scale equipment and manure from a neighboring dairy farm, the researchers grew feed grains -- corn and soybean -- and forage crops -- alfalfa, corn silage, rye silage, red clover and rye -- on 12 acres, one 20th the scale of a 240-acre farm. They also grew canola, which they processed into fuel for the farm's vegetable-oil-powered tractor. They fed the canola meal by-product to the virtual dairy herd. They imported some diesel fuel for custom farm operations, as well as some grain to make up for a slight shortage in their on-farm production.

For comparison purposes, the researchers then simulated two additional farms that represent different Pennsylvania dairy farming approaches. Both simulated farms used the exact same rations for the same number of cows as the research farm's virtual dairy herd, and therefore produced the same amount of milk. Both used diesel fuel for all tractor operations, and were assumed to be practicing no-till agriculture. Both farms also used nitrogen from animal manure and alfalfa, and so had lower nitrogen fertilizer needs than Midwestern grain farms.

However, even though the Pennsylvania farms achieved the same yields per acre, they differed in their size and how much feed they imported. One grew only forage crops on 120 acres, importing all of its feed grain. The other grew all of its forage crops and the majority of its feed, including corn grain and soybeans, on 160 acres.

With this range of farms, the researchers quantified and compared how much fossil energy it took to produce the feed for the farms' cows. They used an open-source computer model, the Farm Energy Analysis Tool, developed by then-master's student, Gustavo Camargo. The researchers accounted for fertilizer, lime, seed, pesticides, on-farm diesel consumption, grain drying and off-farm diesel used to transport inputs to the farm and grains to an off-site storage facility.

"When we looked at the results, our most notable observation is that the smallest Pennsylvania farm -- the one producing only forage and importing everything else -- has a large fossil-energy input compared to the other two," Malcolm said. "Now, that's on a per Pennsylvania farm acre basis. When you consider the different sizes of the farms and adjust the results to a milk-produced basis, the difference is not as big, but you can still see that the two larger farms are using about 15 percent less fossil energy than the small farm to produce the same amount of milk."

The largest source of fossil energy inputs for the small forage-only farm was the production and shipping of Midwestern grain, followed by on-farm diesel and nitrogen fertilizer use. In fact, nitrogen inputs were four times greater for imported corn grain than for that grown on the trial farm, where injected animal manure and nitrogen-fixing legumes were used to meet a significant portion of the crop's nitrogen requirements.

Malcolm said that while growing the canola fuel crop on-farm may have other environmental benefits, it did not result in significant energy savings, considering tradeoffs like the additional land required to grow canola and the energy required to press and process it.

"In terms of energy use, the middle farm -- which wasn't trying to grow fuel crops -- is pretty similar to our farm, where we were growing a fuel crop," she said. "So, just growing your own feed on-farm makes a big difference."

In addition to revealing the energy savings that can come from growing more feed on-farm, these findings can have important economic implications, said Heather Karsten, associate professor of crop production and the director of the long-term cropping-systems trial.

"The reality is that in some years feed costs have gone up, especially in years with high fuel costs and demand for grains from the biofuel sector," she said. "One of the take-home messages from our study is that, in addition to saving energy, this strategy of growing more of your feed on-farm can reduce off-farm nutrient imports and the economic risk of fluctuating feed costs."
Other members of the Penn State research team include Virginia Ishler, dairy extension specialist and Thomas Richard, professor of agricultural and biological engineering.

The U.S. Department of Agriculture Northeast Sustainable Agriculture Research and Education program and USDA Agricultural Research Service supported this work.

Penn State

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Going against the grain -- nitrogen turns out to be hypersociable!
Nitrogen is everywhere: even in the air there is four times as much of it as oxygen.
Soybean nitrogen breakthrough could help feed the world
Washington State University biologist Mechthild Tegeder has developed a way to dramatically increase the yield and quality of soybeans.
Trading farmland for nitrogen protection
Excess nitrogen from agricultural runoff can enter surface waters with devastating effects.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.

Related Nitrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".