Nav: Home

A small dragonfly is found to be the world's longest-distance flyer

March 02, 2016

A dragonfly barely an inch and a half long appears to be animal world's most prolific long distance traveler - flying thousands of miles over oceans as it migrates from continent to continent - according to newly published research.

Biologists at Rutgers University-Newark (RU-N) who led the study - which appears in the journal PLOS ONE - say the evidence is in the genes. They found that populations of this dragonfly, called Pantala flavescens, in locations as far apart as Texas, eastern Canada, Japan, Korea, India, and South America, have genetic profiles so similar that there is only one likely explanation. Apparently - somehow - these insects are traveling distances that are extraordinarily long for their small size, breeding with each other, and creating a common worldwide gene pool that would be impossible if they did not intermingle.

"This is the first time anyone has looked at genes to see how far these insects have traveled," says Jessica Ware, an assistant professor of biology on the faculty of RU-N's College of Arts and Sciences and senior author of the study. "If North American Pantala only bred with North American Pantala, and Japanese Pantala only bred with Japanese Pantala," Ware says, "we would expect to see that in genetic results that differed from each other. Because we don't see that, it suggests the mixing of genes across vast geographic expanses."

But how do insects from different continents manage to meet and hook up? These are not large birds or whales that one would expect to travel thousands of miles. Ware says it appears to be the way their bodies have evolved. "These dragonflies have adaptations such as increased surface areas on their wings that enable them to use the wind to carry them. They stroke, stroke, stroke and then glide for long periods, expending minimal amounts of energy as they do so."

Dragonflies, in fact, have already been observed crossing the Indian Ocean from Asia to Africa. "They are following the weather," says Daniel Troast, who analyzed the DNA samples in Ware's lab while working toward his master's degree in biology, which he earned at the university in 2015. "They're going from India where it's dry season to Africa where it's moist season, and apparently they do it once a year."

Moisture is a must for Pantala to reproduce, and that, says Ware, is why these insects would be driven to even attempt such a perilous trip, which she calls a "kind of suicide mission." The species depends on it. While many will die en route, as long as enough make it, the species survives.

Flight patterns appear to vary. The hardiest of the dragonflies might make the trip nonstop, catching robust air currents or even hurricane winds and gliding all the way. Others may, literally, be puddle jumpers. Pantala need fresh water to mate and lay their eggs - and if while riding a weather current they spot a fresh water pool created by a rainstorm - even on an island in the middle of a vast ocean - Ware and Troast say it's likely they dive earthward and use those pools to mate. After the eggs hatch and the babies are mature enough to fly - which takes just a few weeks - the new dragonflies join the swarm's intercontinental and now multi-generational trek right where their parents left off.

For the moment, the details of this extraordinary insect itinerary are an educated best guess, as are specific routes these migrations might take. Much more work is needed to bring many loose ends together. But now that their work has established a worldwide population of intermingling dragonflies, Ware and Troast hope that scientists can work on plotting those routes in earnest. They would need to be innovative, because tracking devices that can be attached to larger animals are far too big to put on insects.

What the Rutgers scientists have discovered puts this dragonfly far ahead of any identified insect competitor. "Monarch butterflies migrating back and forth across North America were thought to be the longest migrating insects," traveling about 2,500 miles each way, says Troast, "but Pantala completely destroys any migrating record they would have," with its estimated range of 4,400 miles or more. It also exceeds Charles Lindbergh's celebrated solo flight from New York to Paris by at least several hundred miles.

Pantala leaves many of its fellow dragonflies even farther behind. The mysteries of evolution are such that while Pantala and its cousin the Green Darner (Anax junius) have developed into world travelers, Ware says that by contrast, other members of the family "don't ever leave the pond on which they're born - traveling barely 36 feet away their entire lives."
-end-


Rutgers University-Newark

Related Stroke Articles:

Retraining the brain to see after stroke
A new study out today in Neurology, provides the first evidence that rigorous visual training restores rudimentary sight in patients who went partially blind after suffering a stroke, while patients who did not train continued to get progressively worse.
Catheter ablations reduce risks of stroke in heart patients with stroke history, study finds
Atrial fibrillation patients with a prior history of stroke who undergo catheter ablation to treat the abnormal heart rhythm lower their long-term risk of a recurrent stroke by 50 percent, according to new research from the Intermountain Medical Center Heart Institute.
Imaging stroke risk in 4-D
A new MRI technique developed at Northwestern University detects blood flow velocity to identify who is most at risk for stroke, so they can be treated accordingly.
Biomarkers may help better predict who will have a stroke
People with high levels of four biomarkers in the blood may be more likely to develop a stroke than people with low levels of the biomarkers, according to a study published in the Aug.
Pre-stroke risk factors influence long-term future stroke, dementia risk
If you had heart disease risk factors, such as high blood pressure, before your first stoke, your risk of suffering subsequent strokes and dementia long after your initial stroke may be higher.
Intervention methods of stroke need to focus on prevention for blacks to reduce stroke mortality
Blacks are four times more likely than their white counterparts to die from stroke at age 45.
Study shows area undamaged by stroke remains so, regardless of time stroke is left untreated
A study led by Achala Vagal, M.D., associate professor at the University of Cincinnati College of Medicine and a UC Health radiologist, looked at a group of untreated acute stroke patients and found that there was no evidence of time dependence on damage outcomes for the penumbra, or tissue that is at risk of progressing to dead tissue but is still salvageable if blood flow is returned in a stroke, but rather an association with collateral flow -- or rerouting of blood through clear vessels.
Immediate aspirin after mini-stroke substantially reduces risk of major stroke
Using aspirin urgently could substantially reduce the risk of major strokes in patients who have minor 'warning' events.
SAGE launches the European Stroke Journal with the European Stroke Organisation
SAGE, a world leading independent and academic publisher, is delighted to announce the launch of the European Stroke Journal, the flagship journal of the European Stroke Organisation.
The S-stroke or I-stroke?
The year 2016 is an Olympic year. Developments in high-performance swimwear for swimming continue to advance, along with other areas of scientific research.

Related Stroke Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".