Nav: Home

Extreme tornado outbreaks have become more common, says study

March 02, 2016

Most death and destruction inflicted by tornadoes in North America occurs during outbreaks--large-scale weather events that can last one to three days and span huge regions. The largest ever recorded happened in 2011. It spawned 363 tornadoes across the United States and Canada, killing more than 350 people and causing $11 billion in damage.

Now, a new study shows that the average number of tornadoes in these outbreaks has risen since 1954, and that the chance of extreme outbreaks --tornado factories like the one in 2011--has also increased.

The study's authors said they do not know what is driving the changes. "The science is still open," said lead author Michael Tippett, a climate and weather researcher at Columbia University's School of Applied Science and Engineering and Columbia's Data Science Institute. "It could be global warming, but our usual tools, the observational record and computer models, are not up to the task of answering this question yet." Tippett points out that many scientists expect the frequency of atmospheric conditions favorable to tornadoes to increase in a warmer climate--but even today, the right conditions don't guarantee a tornado will occur. In any case, he said, "When it comes to tornadoes, almost everything terrible that happens, happens in outbreaks. If outbreaks contain more tornadoes on average, then the likelihood they'll cause damage somewhere increases."

The results are expected to help insurance and reinsurance companies better understand the risks posed by outbreaks, which can also generate damaging hail and straight-line winds. Over the last 10 years, the industry has covered an average of $12.5 billion in insured losses each year, according to Willis Re, a global reinsurance advisor that helped sponsor the research. The article appears this week in the journal Nature Communications.

Every year, North America sees dozens of tornado outbreaks. Some are small and may give rise to only a few twisters; others, such as the so-called "super outbreaks" of 1974 and 2011, can generate hundreds. In the simplest terms, the intensity of each tornado is ranked on a zero-to-five scale, with other descriptive terms thrown in. The lower gradations cause only light damage, while the top ones, like a twister that tore through Joplin, Missouri, in 2011 can tear the bark off trees, rip houses from their foundations, and turn cars into missiles.

For this study, the authors calculated the mean number of tornadoes per outbreak for each year as well as the variance, or scatter, around this mean. They found that while the total number of tornadoes rated F/EF1 and higher each year hasn't increased, the average number per outbreak has, rising from about 10 to about 15 since the 1950s.

The study was coauthored by Joel Cohen, director of the Laboratory of Populations, which is based jointly at Rockefeller University and Columbia's Earth Institute. Cohen called the results "truly remarkable."

"The analysis showed that as the mean number of tornadoes per outbreak rose, the variance around that mean rose four times faster. While the mean rose by a factor of 1.5 over the last 60 years, the variance rose by a factor of more than 5, or 1.5 x 1.5 x 1.5 x 1.5. This kind of relationship between variance and mean has a name in statistics: Taylor's power law of scaling.

"We have seen [Taylor's power law] in the distribution of stars in a galaxy, in death rates in countries, the population density of Norway, securities trading, oak trees in New York and many other cases," Cohen says. "But this is the first time anyone has shown that it applies to scaling in tornado statistics."

The exponent in Taylor's law number--in this case, the exponent was 4-- can be a measure of clustering, Cohen says. If there's no clustering--if tornadoes occur just randomly--then Taylor's law has an exponent of 1. If there's clustering, then it's greater than 1. "In most ecological applications, the Taylor exponent seldom exceeds 2. To have an exponent of 4 is truly exceptional. It means that when it rains, it really, really, really pours," says Cohen.

Extreme outbreaks have become more frequent because of two factors, Tippett said. First, the average number of tornadoes per outbreak has gone up; second, the rapidly increasing variance, or variability, means that numbers well above the average are more common.

Tippett was concerned that the findings could be artifacts of tornado observational data, which are based on eyewitness accounts and known to have problems with consistency and accuracy. To get around this, he re-ran his calculations after substituting the historical tornado data with environmental proxies for tornado occurrence and number of tornadoes per occurrence. These provide an independent--albeit imperfect--measure of tornado activity. The results were very nearly identical.

As for whether the climate is the cause, Tippett said, "The scientific community has thought a great deal about how the frequency of future weather and climate extremes may change in a warming climate. The simplest change to understand is a shift of the entire distribution, but increases in variability, or variance, are possible as well. With tornadoes, we're seeing both of those mechanisms at play."

"This paper helps begin to answer one of the fundamental questions to which I'd like to know the answer," says Harold Brooks of the U.S. National Oceanic and Atmospheric Administration's National Severe Storms Laboratory. "If tornadoes are being concentrated into more big days, what effect does that have on their impacts compared to when they were less concentrated?"

"The findings are very relevant to insurance companies that are writing business in multiple states, especially in the Midwest," says Prasad Gunturi, senior vice president at Willis Re, who leads the company's catastrophe model research and evaluation activities for North America. "Overall growth in the economy means more buildings and infrastructure are in harm's way," said Gunturi. "When you combine this increased exposure because outbreaks are generating more tornadoes across state lines and the outbreaks could be getting more extreme in general, it means more loss to the economy and to insurance portfolios."

Insurance companies have contracts with reinsurance companies, and these contracts look similar to the ones people have for home and car insurance, though for much higher amounts. The new results will help companies ensure that contracts are written at an appropriate level and that the risks posed by outbreaks are better characterized, said Brooks.

"One big question raised by this work, and one we're working on now, is what in the climate system has been behind this increase in outbreak severity," said Tippett.
-end-
This research was also supported by grants from Columbia's Research Initiatives for Science and Engineering, the Office of Naval Research, NOAA's Climate Program Office and the U.S. National Science Foundation.

The paper, "Tornado outbreak variability follows Taylor's power law of fluctuation scaling and increases dramatically with severity," is available from the authors.

Scientist contacts:
Michael Tippett 212-851-5936 mkt14@columbia.edu
Joel Cohen 212-327-8883 cohen@mail.rockefeller.edu

More information: Kevin Krajick, Senior editor, science news, The Earth Institute kkrajick@ei.columbia.edu 212-854-9729

The Earth Institute, Columbia University mobilizes the sciences, education and public policy to achieve a sustainable earth. http://www.earth.columbia.edu.

The Earth Institute at Columbia University

Related Climate Articles:

Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
Incubating climate change
A group of James Cook University scientists led by Emeritus Professor Ross Alford has designed and built an inexpensive incubator that could boost research into how animals and plants will be affected by climate change.
And the Oscar goes to ... climate change
New research finds that Tweets and Google searches about climate change set new record highs after Leonardo DiCaprio's Academy Awards acceptance speech, suggesting celebrity advocacy for social issues on a big stage can motivate popular engagement.
Cod and climate
Researchers use the North Atlantic Oscillation as a predictive tool for managing an iconic fishery.
What hibernating toads tell us about climate
The ability to predict when toads come out of hibernation in southern Canada could provide valuable insights into the future effects of climate change on a range of animals and plants.
Maryland climate and health report identifies state's vulnerabilities to climate change
A new report by the University of Maryland School of Public Health and the Maryland Department of Health and Mental Hygiene details the impacts of climate change on the health of Marylanders now and in the future.

Related Climate Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".