Nav: Home

Overfishing increases fluctuations in aquatic ecosystems

March 02, 2016

Intense fishing of primarily larger fish not only makes fish populations smaller, it changes the remaining fish. When the fish which have a chance to reproduce before being caught are smaller and have reached sexual maturity earlier, these characteristics are passed down to future generations. In many fish populations targeted by intense fishing, e.g., Atlantic cod across the west coast of North America, the sizes of fish have been observed to have decreased and the age of sexual maturity to have reduced.

Fish are often at the top of the food web in the aquatic ecosystem, so changes in fish can have broader consequences which involve the entire ecosystem.

Together with her American and German colleagues, Academy of Finland Research Fellow Anna Kuparinen from the University of Helsinki studied how fishing changes the ways aquatic ecosystems function. The researchers used computer-generated simulations to help them model the interactions between species and the flow of energy through the food web as well as the overall dynamics of the ecosystem. The research focused on the fishing of perch and whitefish in Lake Constance, which borders Switzerland, Germany and Austria.

Simulations describing the development of the ecosystem targeted by fishing indicated that once intense fishing causes fish to become smaller and reach sexual maturity earlier, the production of plankton in the lake becomes unstable. Similarly, the sizes of the fish populations and their production of offspring fluctuate greatly from one year to the next.

"If the changes in fish are genetic, the stability of the fish populations and the lake ecosystem cannot be regained even if fishing was permanently ended. The study demonstrates how important it is to consider the entire ecosystem and indirect impacts on other species when the impact of fishing is evaluated. For example, the production of offspring among perch is more dependent on the fluctuations of the production of plankton in the lake than the number of female fish producing eggs," says Anna Kuparinen.

"The many food chains leading to fish form complex food webs. The better we understand this complexity, the better we understand how fishing impacts fish and the environment," says Professor Neo Martinez from the University of Arizona, US.
-end-


University of Helsinki

Related Ecosystem Articles:

Diversity increases ecosystem stability
Freiburg's forestry scientists prove that forests that are more diverse are also more productive and more resilient
From the tropics to the boreal, temperature drives ecosystem functioning
University of Arizona researchers found a tight link between temperature and plant and microbe communities within forests, which will allow them to predict how ecosystems might respond to climate changes.
Indigenous knowledge, key to a successful ecosystem restoration
Ecological restoration projects actively involving indigenous peoples and local communities are more successful.
Ecosystem responses to dam removal complex, but predictable
In the United States, the removal of dams now outpaces the construction of new ones -- with more than 1,400 dams decommissioned since the 1970s -- and a new study suggests that the ecosystem effects of dam removal can be predicted.
How one gene in a tiny fish may alter an aquatic ecosystem
Variations in a single gene in a tiny fish alter how they interact with their environment, according to research led by the University of Pennsylvania's Seth Rudman, a postdoctoral researcher.
More Ecosystem News and Ecosystem Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...