Nav: Home

UT and Genera Energy harvest hybrid poplar stand in next step toward a biobased economy

March 02, 2016

KNOXVILLE, Tenn. -- A small stand of poplar trees harvested from a University of Tennessee AgResearch Center is set to help scientists progress further down the path toward low-cost, high-quality biomass and a bioeconomy.

Located on UT's East Tennessee AgResearch Center in Blount County, the 10-acre plot of hybrid poplars was planted just over four years ago and the now 30-ft trees are expected to produce some 60-100 tons of woody biomass -- a crop Tennessee and other Southeastern farmers could potentially sell to biorefineries for conversion into advanced fuels or other biobased products.

The harvest is part of a five-year $15 million multi-disciplinary research and development effort funded by the U.S. Department of Agriculture to reduce barriers to the development of the Southeastern bioeconomy. UT's CRC, located within the UT Institute for Agriculture, leads the effort, which is called the Southeastern Partnership for Integrated Biomass Solutions, or IBSS. Partners in the broad-based effort include Auburn University, North Carolina State University, the University of Georgia, ArborGen, and Genera Energy Inc.

Tim Rials, director of the CRC explains, "The goal of the IBSS partnership is to demonstrate the production of advanced biofuels from sustainable sources of lignocellulosic biomass, that is, biomass made from designed herbaceous and woody crops." IBSS has focused on perennial switchgrass and short-rotation woody crops like eucalyptus, pine and hybrid poplar.

"It's important for the industry and producers to have a portfolio of crops that can supply the cellulosic biomass for the biorefineries," Rials said. "Very little information is available on the performance of hybrid poplar in the Southeast. This project is designed to identify the effect of both genetic differences and management practices on the growth and yield of this potentially important energy crop. The data should provide the basis for future productivity improvements."

The harvest included plots of several hybrid poplar varieties, called clones. Although genetic differences clearly impacted the overall yield, research has shown little difference in the chemical composition of the different hybrid poplar clones. "This information provides valuable guidance for continued enhancement of this new energy crop," Rials said.

Similar field trials, some with the same varieties, are also underway in Alabama, Mississippi and North Carolina to evaluate environmental impacts on biomass yield.

IBSS partner Genera Energy, a biomass supply company based in Vonore, Tenn, led the harvesting effort for the poplars. The harvester utilized in the project is a standard self-propelled forage harvester with a very unique harvesting head attached to it. Only two of these woody harvesting heads exist in the world, and proving new harvesting technologies and logistics are at the core of improving the biomass supply chain for woody crops. In addition to the Knoxville harvest, Genera Energy also conducted additional harvesting of poplars in Mississippi with IBSS and Greenwood Resources.

Reducing the risk of supplying lignocellulosic feedstock and ensuring a sustainable, predictable supply of feedstocks with desirable properties for optimal performance during industrial processing is a challenge that must be confronted to make the Southeast a more attractive location for a new industry, Rials maintains. "The IBSS Partnership is working with that end in mind," he says.

A portion of the harvest from the UT AgResearch poplar stand, along with similar samples from the harvests at other sites, will be sent to different partner labs at the CRC, Auburn University and North Carolina State University for physical property analyses such as moisture content analyses and specific gravity examinations - important measurements to gauge the materials' usefulness for industry. Scientists with the CRC will also use NIR (near infrared) technology to examine the chemistry of the wood with an eye toward the development of future bio-based products.

The IBSS partners are working to match the economic and environmental performance of each feedstock with a preferred conversion platform so that the ultimate product, whether it's a biofuel or chemicals derived from the distillation of the biomass into its component parts, will be reliable, available and affordable.

Once the samples for examination at the CRC are set aside, additional samples from the harvest will be delivered to Genera Energy for pre-processing and further analysis, including spectroscopic monitoring. Genera's facility, which is the country's largest and most comprehensive industrial biomass management and processing facility, employs real-time feedstock monitoring technology to improve feedstock pre-processing, which reduces the risk of delivering material that fails to meet specifications. "The biomass preprocessing step helps guarantee to potential biomass users a consistent and uniform feedstock from which they can refine fuels and other products," said Sam Jackson, Genera's vice president for business development.

While the feedstock needed for biorefineries to produce biofuels and other biobased industrial products is currently readily available in the Southeast because abundant supplies of forest and agricultural residues, dedicated bioenergy crops will be needed to meet industry requirements for a sustainable industry to develop.

"The beauty of the poplars we are harvesting is that they will regenerate and continue to grow," said Rials. "In just 2 or 3 years they could be harvested again as a biomass crop. This makes them attractive to both producers and industry."
-end-
Through its mission of research, teaching and extension, the University of Tennessee Institute of Agriculture touches lives and provides Real. Life. Solutions. ag.tennessee.edu

About the UT Center for Renewable Carbon:

The Center for Renewable Carbon, in the University of Tennessee Institute of Agriculture, is an internationally recognized leader in the development of new and improved bioenergy sources, biorefinery processes, bioproducts, and biomaterials that coordinates the science and knowledge transfer and trains the workforce required to develop a sustainable and economically viable bioeconomy. For more information, see renewablecarbon.org

About Genera Energy, Inc.:

Genera Energy Inc. supplies biomass feedstocks for the advanced biobased industries, offering scalable industrial scale agriculture biomass supply solutions ranging from full service energy crop production to customizable supply chain solutions and managing biomass supply. Genera's proprietary Supply ASSURE® feedstock management system and its BIN-SPEC® material handling and milling system offer Genera's customers maximum feedstock reliability and quality while minimizing variability and cost. Based in Vonore, Tenn., Genera operates the country's largest and most comprehensive industrial biomass management and processing facility. Focus on innovation and sustainability in delivering industrial biomass supply systems has earned Genera the World's Biofuels Market's prestigious 2013 Sustainable Feedstock Innovation Award. For more information, visit http://www.generaenergy.com

University of Tennessee Institute of Agriculture

Related Biomass Articles:

Ecology insights improve plant biomass degradation by microorganisms
Microbes are widely used to break down plant biomass into sugars, which can be used as sustainable building blocks for novel biocompounds.
Termite gut holds a secret to breaking down plant biomass
In the Microbial Sciences Building at the University of Wisconsin-Madison, the incredibly efficient eating habits of a fungus-cultivating termite are surprising even to those well acquainted with the insect's natural gift for turning wood to dust.
Scientists harness solar power to produce clean hydrogen from biomass
A team of scientists at the University of Cambridge has developed a way of using solar power to generate a fuel that is both sustainable and relatively cheap to produce.
How much biomass grows in the savannah?
The ability of the savannahs to store the greenhouse gas carbon dioxide is ultimately determined by the amount of aboveground woody biomass.
Economics of forest biomass raise hurdles for rural development
The use of residual forest biomass for rural development faces significant economic hurdles that make it unlikely to be a source of jobs in the near future, according to an analysis by economists.
Biomass heating could get a 'green' boost with the help of fungi
In colder weather, people have long been warming up around campfires and woodstoves.
Unraveling the science behind biomass breakdown
Using the Titan supercomputer, an ORNL team created models of up to 330,000 atoms that led to the discovery of a THF-water cosolvent phase separation on the faces of crystalline cellulose fiber.
US holds potential to produce billion tons of biomass, support bioeconomy
The 2016 Billion-Ton Report, jointly released by the US Department of Energy and Oak Ridge National Laboratory, concludes that the United States has the potential to sustainably produce at least 1 billion dry tons of nonfood biomass resources annually by 2040.
Improving poor soil with burned up biomass
Researchers at the RIKEN Center for Sustainable Resource Science in Japan have shown that torrefied biomass can improve the quality of poor soil found in arid regions.
Women cooking with biomass fuels more likely to have cataracts
Women in India who cook using fuels such as wood, crop residues and dried dung instead of cleaner fuels are more likely to have visually impairing nuclear cataracts, according to a new study by the London School of Hygiene & Tropical Medicine.

Related Biomass Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".