Nav: Home

Food on Mars, food on Earth: NASA taps USU scientists for space quest

March 02, 2017

LOGAN, UTAH, USA -- Can earthlings live on Mars? They can if they develop self-sufficiency. NASA is betting on a multi-institution team of the best and brightest, including Utah State University scientists, to create the necessary technology and put it in the hands of future Mars pioneers.

Biochemist Lance Seefeldt and botanist Bruce Bugbee are front and center in the $15 million, five-year project announced Feb. 16, 2017, by NASA to initiate the new Space Technology Research Institute, "Center for the Utilization of Biological Engineering in Space" or CUBES.

"It's a really exciting venture," says Seefeldt, professor in USU's Department of Chemistry and Biochemistry. "NASA is moving beyond near-Earth orbit projects and investing in technologies to make long-duration space missions possible and sustainable."

Consider the challenge awaiting Mars astronauts, he says.

"It takes at least two years to get supplies from Earth to Mars," Seefeldt says. "That supply line is too slow and costly, so newly arrived Mars explorers are going to have to generate their own food, pharmaceuticals and infrastructure."

Bugbee says every ounce of a rocket's payload drives up the cost of getting it launched into space.

"The common adage everything is worth its weight in gold rings especially true in space," he says.

A professor in USU's Department of Plants, Soils and Climate, Bugbee has collaborated with NASA for more than 30 years to study regenerative systems and the effects of microgravity on plants.

Growing food and producing other necessities even on oxygen and nitrogen-rich Earth is no small challenge. It was scarcely a century ago German chemists Haber and Bosch came up with a way to capture nitrogen, on which all living things depend but can't access from the air, and produce commercial-scale quantities of life-sustaining fertilizer. How will Mars farmers accomplish a more complicated task?

"For Mars, we have only carbon dioxide, a little nitrogen and scant surface water to work with," Seefeldt says.

Fortunately, the USU chemist is already reaching beyond Haber-Bosch because, as revolutionary as it was, the 20th century technology relies on fossil fuels and carries a heavy carbon footprint.

"We know we can initiate nitrogen fixation - the process by which nitrogen is converted to ammonia - using bacteria and this is the direction we'll follow to determine how to accomplish this task on Mars," Seefeldt says. "To do this, we need light and though it's more dispersed on Mars than Earth, it's available."

Once that hurdle is cleared, it's on to food production and who better to tackle this challenge than Bugbee, whose work on all aspects of growing plants in closed systems has helped astronauts and cosmonauts grow plants aboard the shuttle and International Space Station (ISS). But that work hasn't been with one small and carefully managed crop after another because, nearly 12 years ago, funding for NASA was cut and the agency halted nearly all biological research. Bugbee and USU colleagues Scott Jones, soil scientist and Gail Bingham, emeritus professor of plant science, continued, with Russian collaborators, to gather data and send plants and growth chambers to the ISS on Russian rockets.

"The central challenge is to grow food from recycled wastes in a small, closed system," Bugbee says. "Exploring Mars means nearly perfect recycling of water, nutrients, gasses and plant parts that aren't consumed. We'll start with a recycling, hydroponic system and gradually expand to include Martian soil."

He adds life on Mars will be sustained by a strictly vegan diet, because animal products are too expensive to produce. Some suggest long-term space explorers should just live on vitamin pills, dried food and water, but Bugbee cautions there's plenty we don't know about the importance of dietary diversity.

"Every day, we eat products from hundreds of plants," he says. "Most dieticians recommend a diet based on at least a hundred diverse plants; NASA engineers would like to grow only about five plants. The answer is somewhere in between."

Seefeldt says putting food on the table, whether on Earth or Mars, shouldn't be taken for granted.

"Here on Earth, in areas such as drought-stricken Africa, where the infrastructure is not yet in place to take advantage of century-old technology, we still face the challenge of producing enough protein to feed hungry people," he says. "What we learn from feeding people on Mars will advance our efforts on this planet."

Seefeldt praises the efforts of the multi-institution team, which includes researchers from the University of California, Berkeley; the University of California, Davis and Stanford University, as well as industrial partners Autodesk and Physical Sciences, Inc.

"We especially applaud principal investigator Adam Arkin of UC Berkeley, who took this diverse collection of scientists and expertise and gave it one, strong voice," he says. "This is an exceptional team and its efforts will create amazing opportunities for students at each of these universities."
-end-


Utah State University

Related Mars Articles:

How hard did it rain on Mars?
Heavy rain on Mars reshaped the planet's impact craters and carved out river-like channels in its surface billions of years ago, according to a new study published in Icarus.
Does Mars have rings? Not right now, but maybe one day
Purdue researchers developed a model that suggests that debris that was pushed into space from an asteroid or other body slamming into Mars around 4.3 billion years ago and alternates between becoming a planetary ring and clumping up to form a moon.
Digging deeper into Mars
Scientists continue to unravel the mystery of life on Mars by investigating evidence of water in the planet's soil.
A bewildering form of dune on Mars
Researchers have discovered a type of dune on Mars intermediate in size between tiny ripples and wavier dunes, and unlike anything seen on Earth.
Mars is emerging from an ice age
Radar measurements of Mars' polar ice caps reveal that the mostly dry, dusty planet is emerging from an ice age, following multiple rounds of climate change.
Shifting sands on Mars
University of Iowa researchers have a $501,000 NASA grant to travel to Iceland to better understand sand dunes found all over the planet Mars.
Potatoes on Mars
A team of world-class CIP and NASA scientists will grow potatoes under Martian conditions in a bid to save millions of lives.
You too can learn to farm on Mars!
Scientists at Washington State University and the University of Idaho are helping students figure out how to farm on Mars, much like astronaut Mark Watney, played by Matt Damon, attempts in the critically acclaimed movie 'The Martian.'
Similarities between aurorae on Mars and Earth
An international team of researchers has for the first time predicted the occurrence of aurorae visible to the naked eye on a planet other than Earth.
Mars might have liquid water
Researchers have long known that there is water in the form of ice on Mars.

Related Mars Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...