Nav: Home

Taking earth's inner temperature

March 02, 2017

The temperature of Earth's interior affects everything from the movement of tectonic plates to the formation of the planet.

A new study led by Woods Hole Oceanographic Institution (WHOI) suggests the mantle--the mostly solid, rocky part of Earth's interior that lies between its super-heated core and its outer crustal layer -- may be hotter than previously believed. The new finding, published March 3 in the journal Science, could change how scientists think about many issues in Earth science including how ocean basins form.

"At mid-ocean ridges, the tectonic plates that form the seafloor gradually spread apart," said the study's lead author Emily Sarafian, a graduate student in the MIT-WHOI Joint Program. "Rock from the upper mantle slowly rises to fill the void between the plates, melting as the pressure decreases, then cooling and re-solidifying to form new crust along the ocean bottom. We wanted to be able to model this process, so we needed to know the temperature at which rising mantle rock starts to melt."

But determining that temperature isn't easy. Since it's not possible to measure the mantle's temperature directly, geologists have to estimate it through laboratory experiments that simulate the high pressures and temperatures inside the Earth.

Water is a critical component of the equation: the more water (or hydrogen) in rock, the lower the temperature at which it will melt. The peridotite rock that makes up the upper mantle is known to contain a small amount of water. "But we don't know specifically how the addition of water changes this melting point," said Sarafian's advisor, WHOI geochemist Glenn Gaetani. "So there's still a lot of uncertainty."

To figure out how the water content of mantle rock affects its melting point, Sarafian conducted a series of lab experiments using a piston-cylinder apparatus , a machine that uses electrical current, heavy metal plates, and stacks of pistons in order to magnify force to recreate the high temperatures and pressures found deep inside the Earth. Following standard experimental methodology, Sarafian created a synthetic mantle sample. She used a known, standardized mineral composition and dried it out in an oven to remove as much water as possible.

Until now, in experiments like these, scientists studying the composition of rocks have had to assume their starting material was completely dry, because the mineral grains they're working with are too small to analyze for water. After running their experiments, they correct their experimentally determined melting point to account for the amount of water known to be in the mantle rock.

"The problem is, the starting materials are powders, and they adsorb atmospheric water," Sarafian said. "So, whether you added water or not, there's water in your experiment."

Sarafian took a different approach. She modified her starting sample by adding spheres of a mineral called olivine, which occurs naturally in the mantle. The spheres were still tiny--about 300 micrometers in diameter, or the size of fine sand grains--but they were large enough for Sarafian to analyze their water content using secondary ion mass spectrometry (SIMS). From there, she was able to calculate the water content of her entire starting sample. To her surprise, she found it contained approximately the same amount of water known to be in the mantle.

Based on her results, Sarafian concluded that mantle melting had to be starting at a shallower depth under the seafloor than previously expected.

To verify her results, Sarafian turned magnetotellurics -- a technique that analyzes the electrical conductivity of the crust and mantle under the seafloor. Molten rock conducts electricity much more than solid rock, and using magnetotelluric data, geophysicists can produce an image showing where melting is occurring in the mantle.

But a magnetotelluric analysis published in Nature in 2013 by researchers at the Scripps Institution of Oceanography in San Diego showed that mantle rock was melting at a deeper depth under the sea floor than Sarafian's experimental data had suggested.

At first, Sarafian's experimental results and the magnetotelluric observations seemed to conflict, but she knew both had to be correct. Reconciling the temperatures and pressures Sarafian measured in her experiments with the melting depth from the Scripps study led her to a startling conclusion: The oceanic upper mantle must be 60°C (~110°F) hotter than current estimates," Sarafian said.

A 60-degree increase may not sound like a lot compared to a molten mantle temperature of more than 1,400°C. But Sarafian and Gaetani say the result is significant. For example, a hotter mantle would be more fluid, helping to explain the movement of rigid tectonic plates.
-end-
Funding for this research was provided by the National Science Foundation and the WHOI Deep Ocean Exploration Institute.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu.

Woods Hole Oceanographic Institution

Related Seafloor Articles:

New atlas provides highest-resolution imagery of the Polar Regions seafloor
The most comprehensive and high-resolution atlas of the seafloor of both Polar Regions is presented this week (Tuesday April 25) at the European Geosciences Union General Assembly in Vienna.
Underwater volcano's eruption captured in exquisite detail by seafloor observatory
Seismic data from the 2015 eruption of Axial Volcano, an underwater volcano about 300 miles off the Oregon coast, has provided the clearest look at the inner workings of a volcano where two ocean plates are moving apart.
MBARI's seafloor maps provide new information about 2015 eruption at Axial Seamount
Axial Seamount, a large underwater volcano off of the Oregon coast, is one of the most active volcanoes in the world, having last erupted in 2015.
Abundant and diverse ecosystem found in area targeted for deep-sea mining
In a study published in Scientific Reports, scientists discovered impressive abundance and diversity among the creatures living on the seafloor in the Clarion-Clipperton Zone -- an area in the equatorial Pacific Ocean being targeted for deep-sea mining.
EARTH: Seeing the seafloor in high definition
As the US celebrates National Oceans Month in June, scientists who study the seafloor are excited because they believe that humans will end this century with a far better view of our seafloor than at any other time in human history.
'Dirty Blizzard' sent 2010 Gulf oil spill pollution to seafloor
Scientists working in the Gulf of Mexico have found that contaminants from the 2010 Deepwater Horizon oil spill lingered in the subsurface water for months after oil on the surface had been swept up or dispersed.
New study pinpoints stress factor of mega-earthquake off Japan
Scripps Institution of Oceanography, UC San Diego researchers published new findings on the role geological rock formations offshore of Japan played in producing the massive 2011 Tohoku-oki earthquake -- one of only two magnitude nine mega-earthquakes to occur in the last 50 years.
Evidence of ancient life discovered in mantle rocks deep below the seafloor
Ancient rocks harbored microbial life deep below the seafloor, reports scientists from the Woods Hole Oceanographic Institution, Virginia Tech, and University of Bremen.
New digital seafloor map provides answers and more questions
Ocean sediments cover 70 percent of our planet's surface, forming the substrate for the largest ecosystem on Earth and its largest carbon reservoir -- but the most recent map of seafloor geology was drawn by hand more than 40 years ago.
Big data maps world's ocean floor
Scientists from the University of Sydney's School of Geosciences have led the creation of the world's first digital map of the seafloor's geology.

Related Seafloor Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...