Nav: Home

Whether horseradish flea beetles deter predators depends on their food plant and their life stage

March 02, 2020

Horseradish flea beetles use plant defense compounds, so-called glucosinolates, from their host food plants for their own defense. Like their hosts, they have an enzyme which converts the glucosinolates into toxic mustard oils. A research team at the Max Planck Institute for Chemical Ecology in Jena, Germany, has now found that these glucosinolates are present in all life stages of the horseradish flea beetle; however, the enzyme required to convert these into toxic substances is not always active. Although larvae are able to successfully fend off attack from a predator, such as the harlequin ladybird, pupae are predated because they lack enzyme activity (Functional Ecology, February 2020, doi: 10.1111/1365-2435.13548).

As their name suggests, horseradish flea beetles feed on horseradish, but also on other plants that are equipped with a so-called "mustard oil bomb", such as rapeseed, mustard and other cruciferous plants. This defensive mechanism is based on two components: glucosinolates (or mustard oil glucosides) - plant defense compounds - and the enzyme myrosinase. When the plant tissue is damaged, the non-toxic glucosinolates come into contact with the myrosinase, which converts the glucosinolates into toxic mustard oils, so the "bomb is triggered". The horseradish flea beetle copies the plant defense system by taking up non-toxic glucosinolates from its food plants, and producing its own beetle myrosinase (see our press release on the closely related striped flea beetles "Beetles that taste like mustard", https://www.ice.mpg.de/ext/index.php?id=1105&L=0, May 8, 2014). A team of scientists led by Franziska Beran, head of the Research Group "Sequestration and Detoxification in Insects" at the Max Planck Institute for Chemical Ecology in Jena, Germany, now wanted to find out whether all developmental stages, from egg to beetle, can defend themselves with their mustard oil bomb and whether it represents an effective protection against predators. Their experiments revealed that glucosinolates can be found in all life stages of the horseradish flea beetle. However, the beetle myrosinase was not active in all of them. The researchers determined myrosinase activity by measuring the sugars, which are cleaved off the glucosinolates by the myrosinase enzyme. These sugars accumulate over time.

„Larvae showed a high level of enzyme activity, whereas the activity could hardly be detected in pupae. The ability to fend off predators by using plant defense substances therefore differs considerably between the different life stages", Theresa Sporer, the first author of the study, describes the results. To find our whether the differences in enzyme activity are really important for an efficient defense, the scientists offered the larvae and pupae of the horseradish flea beetle to a voracious predator, the larvae of the harlequin ladybird. "What we observed in this experiment was impressive", Johannes Körnig, a co-author of the study, reports. "When a lady beetle larva attacks a flea beetle larva, it feeds only very briefly, then moves away from their prey and frequently vomits. They rather starve to death than feed on larvae which are protected by a mustard oil bomb." In contrast, pupae had no chemical protection and were eaten by ladybird larvae. Likewise, a comparison of larvae which had either stored glucosinolates or not, depending on which plant they fed beforehand, showed that these plant chemical compounds are in fact crucial for defense: Larvae that had stored glucosinolates were able to fend off predators, whereas larvae without glucosinolates were killed.

For the researchers, it was still surprising that pupae were not chemically protected. After all, during this developmental stage they are immobile and cannot escape. Therefore, one would expect that a particularly good chemical defense would compensate for the immobility of pupae. However, it is still unclear which predators feed on pupae. The scientists hypothesize that nematodes and microbial pathogens could be important natural enemies.

Further studies are planned to find out whether the beetle's mustard oil bomb can also be successfully used against enemies in the natural habitat of the horseradish flea beetle. Moreover, they would like to investigate which substances are important for the pupae's defense against their natural enemies and whether pupae deploy other defense mechanisms. The results will also be of interest for gardeners, since horseradish flea beetles are suspected to be responsible for the drop of yield in horseradish cultivation.
-end-
Original Publication:

Sporer, T., Körnig, J., Beran, F. (2020). Ontogenetic differences in the chemical defence of flea beetles influence their predation risk. Functional Ecology, doi: 10.1111/1365-2435.13548 (accepted article)

https://doi.org/10.1111/1365-2435.13548

https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.13548

Further Information:

Dr. Franziska Beran, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena. Tel. +49 3641 57-1553, E-Mail fberan@ice.mpg.de

Contact and Picture Requests:

Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, Tel. +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download of videos and high-resolution images via http://www.ice.mpg.de/ext/downloads2020.html

Max Planck Institute for Chemical Ecology

Related Enzyme Articles:

Oldest enzyme in cellular respiration isolated
Researchers from Goethe University have found what is perhaps the oldest enzyme in cellular respiration.
UQ researchers solve a 50-year-old enzyme mystery
Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.
Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.
Triggered by light, a novel way to switch on an enzyme
In living cells, enzymes drive biochemical metabolic processes. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.
A 'corset' for the enzyme structure
The structure of enzymes determines how they control vital processes such as digestion or immune response.
Could inhibiting the DPP4 enzyme help treat coronavirus?
Researchers and clinicians are scrambling to find ways to combat COVID-19, including new therapeutics and eventually a vaccine.
Bacterial enzyme could become a new target for antibiotics
Scientists discover the structure of an enzyme, found in the human gut, that breaks down a component of collagen.
Chemists create new artificial enzyme
Rajeev Prabhakar, a computational chemist at the University of Miami, and his collaborators at the University of Michigan have created a novel, synthetic, three-stranded molecule that functions just like a natural metalloenzyme, or an enzyme that contains metal ions.
First artificial enzyme created with two non-biological groups
Scientists at the University of Groningen turned a non-enzymatic protein into a new, artificial enzyme by adding two abiological catalytic components: an unnatural amino acid and a catalytic copper complex.
Enzyme may represent new target for treating asthma
An enzyme called diacylglycerol kinase zeta (DGKζ) appears to play an important role in suppressing runaway inflammation in asthma and may represent a novel therapeutic target.
More Enzyme News and Enzyme Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.