Nav: Home

Quantum mechanical simulations of Earth's lower mantle minerals

March 02, 2020

Recent progress in theoretical mineral physics based on the ab initio quantum mechanical computation method has been dramatic in conjunction with the rapid advancement of computer technologies. It is now possible to predict stability, elasticity, and transport properties of complex minerals quantitatively with uncertainties that are comparable or even smaller than those attached in experimental data. These calculations under in situ high-pressure (P) and high-temperature (T) conditions are of particular interest, since they allow us to construct a priori mineralogical models of the deep Earth. In the present article, we briefly review our recent accomplishments in studying high-P phase relations, elasticity, thermal conductivity and rheological properties of major lower mantle silicate and oxide minerals including (Mg,Fe)SiO3 bridgmanite, its high-pressure form post-perovskite, CaSiO3 perovskite, (Mg,Fe)O ferroplericlase, and some hydrous phases (AlOOH, MgSiO4H2, FeOOH). Our analyses indicate that the pyrolitic composition can be used to describe the Earth's properties quite well in terms all of densities, and P and S wave velocity. Computations also suggest some new hydrous compounds which could persist down to the deepest mantle and that the post-perovskite phase boundary is the boundary not only of the mineralogy but also of the thermal conductivity.

Ehime University

Related Thermal Conductivity Articles:

Investigating a thermal challenge for MOFs
New research led by an interdisciplinary team across six universities examines heat transfer in MOFs and the role it plays when MOFs are used for storing fuel.
Thermal manipulation of plasmons in atomically thin films
Nanoscale photothermal effects can induce substantial changes in the optical response experienced by the probing light, thus suggesting their applications in all-optical light modulation.
Making plastic more transparent while also adding electrical conductivity
In an effort to improve large touchscreens, LED light panels and window-mounted infrared solar cells, researchers at the University of Michigan have made plastic conductive while also making it more transparent.
Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)
Researchers found a new sort of simple one-dimensional (1D) crystal structured bismuth selenohalides (BiSeX, X = Br, I) with extremely low thermal conductivity.
Minimizing thermal conductivity of crystalline material with optimal nanostructure
Japanese researchers successfully minimized thermal conductivity by designing, fabricating, and evaluating the optimal nanostructure-multilayer materials through materials informatics (MI), which combines machine learning and molecular simulation.
Scientists measured electrical conductivity of pure interfacial water
Skoltech scientists in collaboration with researchers from the University of Stuttgart, the Karlsruhe Institute of Technology and the Russian Quantum Center achieved the first systematic experimental measurements of the electrical conductivity of pure interfacial water, hence producing new results significantly extending our knowledge of interfacial water.
Atomic magnetometer points to better picture of heart conductivity
Mapping the electrical conductivity of the heart would be a valuable tool in diagnosis and disease management, but doing so would require invasive procedures, which aren't capable of directly mapping dielectric properties.
Isotopically enriched cubic boron nitride reveals high thermal conductivity
An international team of physicists, materials scientists, and mechanical engineers has confirmed the high thermal conductivity predicted in isotopically enriched cubic boron nitride, the researchers report in the electronic edition of the journal Science. c-BN is particularly challenging to make and it's difficult to measure its thermal conductivity accurately when the value is high.
Super-resolution at all scales with active thermal detection
IBS research team found the temperature increase caused by the probe beam could be utilized to generate a signal per se for detecting objects.
Thermal cameras effective in detecting rheumatoid arthritis
A new study, published today in Scientific Reports, highlights that thermal imaging has the potential to become an important method to assess Rheumatoid Arthritis.
More Thermal Conductivity News and Thermal Conductivity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#573 Penis. That's It. That's the title.
This episode is about penises. That was your content warning. Penises. Where they came from. Why they're useful. And the many, many wild things that animals do with them. Come for the world's oldest penis, stay for the creature that ejaculates 80 percent of its bodyweight. Host Bethany Brookshire talks with Emily Willingham about her new book, "Phallacy: Life Lessons from the Animal Penis".
Now Playing: Radiolab

There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at