Nav: Home

New study reveals the secret of magmatic rocks consisting of only one mineral

March 02, 2020

Geologists from Wits University in Johannesburg, South Africa, have come up with an original explanation of how nature may produce an intriguing class of magmatic rocks that are made up of only one type of mineral.

The magmatic minerals are stored at great depth in the Earth and are delivered from there into the shallow intrusions close to the planet's surface in the form of magmas - essentially hot liquids of molten minerals. On cooling, these magmas crystallise to form rocks that are commonly composed of several types of minerals.

However, some of these magmas crystallise into rocks that consist of only one mineral. A typical example is anorthosite - a magmatic rock that is made up of only one mineral called plagioclase - a component that is currently considered to be important for glass fibre manufacturing.

Anorthosites occur as very prominent, white-coloured layers in many layered intrusions worldwide and, in particular, are common for the famous platinum-rich Bushveld Complex in South Africa - the largest basaltic magma chamber in the Earth's crust - in which these layers extend for hundreds of kilometres.

For years, geologists have been puzzling about how these remarkable layers of pure anorthosites are produced.

"There were many attempts to solve this issue involving various processes that operate within the shallow magma chambers, but they were not particularly successful," says Professor Rais Latypov from the School of Geosciences at Wits University.

However, Latypov and his team have now found an elegant solution to this long-standing petrological puzzle.

"We took a radically different approach and started searching for a mechanism to generate melts saturated in plagioclase alone outside of the shallow magma chambers," says Rais Latypov.

"We realised that some melts rising up from deep-seated magma chambers may become saturated in plagioclase alone. This happens in response to decompression as the melts ascend from the depth towards the Earth's surface." This research was published a paper in Scientific Reports.

When these magmas arrive into a shallow magma chamber and cool there, they may crystallise stratiform layers of pure plagioclase composition like the ones we observe in the Bushveld Complex.

Latypov and his team believe that their work represents a significant advance in the understanding of the Earth's magmatic systems.

"This study provides a long-missing bridge between volcanology - where we mostly deal with the generation of melts and their ascent - and igneous petrology that mainly focuses on crystallisation of these melts within magma chambers," says Latypov.

"We can now paint a much better picture of how some of Earth's valuable minerals are derived from the Earth's depth and deposited in the form of monomineralic layers in the shallow intrusions, thus making them much easier to access."
-end-


University of the Witwatersrand

Related Research Articles:

More Research News and Research Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.