Nav: Home

New study reveals the secret of magmatic rocks consisting of only one mineral

March 02, 2020

Geologists from Wits University in Johannesburg, South Africa, have come up with an original explanation of how nature may produce an intriguing class of magmatic rocks that are made up of only one type of mineral.

The magmatic minerals are stored at great depth in the Earth and are delivered from there into the shallow intrusions close to the planet's surface in the form of magmas - essentially hot liquids of molten minerals. On cooling, these magmas crystallise to form rocks that are commonly composed of several types of minerals.

However, some of these magmas crystallise into rocks that consist of only one mineral. A typical example is anorthosite - a magmatic rock that is made up of only one mineral called plagioclase - a component that is currently considered to be important for glass fibre manufacturing.

Anorthosites occur as very prominent, white-coloured layers in many layered intrusions worldwide and, in particular, are common for the famous platinum-rich Bushveld Complex in South Africa - the largest basaltic magma chamber in the Earth's crust - in which these layers extend for hundreds of kilometres.

For years, geologists have been puzzling about how these remarkable layers of pure anorthosites are produced.

"There were many attempts to solve this issue involving various processes that operate within the shallow magma chambers, but they were not particularly successful," says Professor Rais Latypov from the School of Geosciences at Wits University.

However, Latypov and his team have now found an elegant solution to this long-standing petrological puzzle.

"We took a radically different approach and started searching for a mechanism to generate melts saturated in plagioclase alone outside of the shallow magma chambers," says Rais Latypov.

"We realised that some melts rising up from deep-seated magma chambers may become saturated in plagioclase alone. This happens in response to decompression as the melts ascend from the depth towards the Earth's surface." This research was published a paper in Scientific Reports.

When these magmas arrive into a shallow magma chamber and cool there, they may crystallise stratiform layers of pure plagioclase composition like the ones we observe in the Bushveld Complex.

Latypov and his team believe that their work represents a significant advance in the understanding of the Earth's magmatic systems.

"This study provides a long-missing bridge between volcanology - where we mostly deal with the generation of melts and their ascent - and igneous petrology that mainly focuses on crystallisation of these melts within magma chambers," says Latypov.

"We can now paint a much better picture of how some of Earth's valuable minerals are derived from the Earth's depth and deposited in the form of monomineralic layers in the shallow intrusions, thus making them much easier to access."
-end-


University of the Witwatersrand

Related Research Articles:

More Research News and Research Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.