Nav: Home

Is there a technological solution to aquatic dead zones?

March 02, 2020

Washington, DC-- Could pumping oxygen-rich surface water into the depths of lakes, estuaries, and coastal ocean waters help ameliorate dangerous dead zones? New work led by Carnegie's David Koweek and Ken Caldeira and published open access by Science of the Total Environment says yes, although they caution that further research would be needed to understand any possible side effects before implementing such an approach.

When excessive nutrients from agriculture and other human activities wash into waterways, it can create a dangerous phenomenon called eutrophication. This can lead to low-oxygen dead zones called hypoxia.

"Low-oxygen dead zones are one of the most-pervasive problems plaguing both marine and freshwater systems around the world and a major problem for communities that depend on fishing," Koweek said.

Efforts to fight hypoxia often focus on reducing agricultural runoff and on preventing nutrients from being overloaded into waterways. But this is a very slow process that involves changing farming practices, upgrading wastewater treatment facilities, and altering home fertilizer usage.

Koweek and Caldeira led a team that investigated a proposed technological remedy, called downwelling, which could complement nutrient-reduction programs. This involves pumping naturally more-oxygenated water from the surface down into the depths of the affected body of water.

"In theory, downwelling would create vertical mixing in the water, distributing oxygen and preventing hypoxic conditions from taking hold," Koweek explained. "We wanted to test this idea and see if it would really work."

The team built models to compare downwelling to the two most-commonly used technological techniques for preventing dead zones--bubbling oxygen from the bottom and spraying fountain water across the surface. Their models indicate that downwelling would be three to 100 times more efficient than bubbling and 10,000 to a million times more efficient than fountains.

They then did a field experiment at the Searsville Reservoir in Woodside, California, which demonstrated that downwelling could increase oxygen saturation in the immediate area surrounding the pumps by between 10 and 30 percent, enough to alleviate hypoxic stress for many marine organisms. However, this did not extend for more than a handful of meters beyond the vicinity of the pipes through which the surface water was pumped. This means that an extensive network would be necessary for any major effort to fight dead zones in an economically important or ecologically sensitive area.

According to the researchers, their work indicates that downwelling technology may show potential to scale up to larger areas in which annual dead zones create great ecological and economic distress, such as the Chesapeake Bay or the Gulf of Mexico. They estimate that the energy required to power the pumps could cost tens of millions of dollars each year. Operating downwelling pumps year-round in the Chesapeake could cost between $4 and $47 million; In the Gulf, the same could cost between $26 and $263 million.

But these price tags are relatively small compared to the costs of upgrades to wastewater treatment facilities and fertilizer-reduction programs that limit nutrient inputs to the water bodies. This suggests that downwelling technology could be used alongside longer-term plans to reduce nutrient pollution.

"Reducing nutrient pollution is the only way to eliminate hypoxia permanently," Calderia said. "However, our work shows that downwelling is a technological solution that could mitigate the risk of low-oxygen dead zones while nutrient management strategies are put in place."
-end-
Other co-authors on the paper are Carnegie's Clara García-Sánchez (now at Delft University of Technology) and Philip Brodrick (now at the Jet Propulsion Laboratory), as well as Parker Gassett of the University of Maine.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Side Effects Articles:

New drug can ease the side effects of medication against severe depression
Today, severe depressions require a high dose of antidepressants. However, the high dose may also cause serious side effects.
University of Cincinnati research looks at side effects for pediatric medications
Dr. Jeffrey Strawn, associate professor in the Department of Psychiatry and Behavioral Neuroscience at the University of Cincinnati College of Medicine, and Jeffrey Mills, associate professor in the Department of Economics at the UC Lindner College of Business, published a study in the Journal of the American Academy of Child & Adolescent Psychiatry looking specifically at side effects that impact children and adolescents being treated for anxiety disorders and obsessive-compulsive disorder (OCD).
Reducing the side-effects of prostate hormone therapy with exercise
A prescription of short-term exercise for patients with advanced prostate cancer could help to reduce the side-effects of hormone therapy, according to new research.
The gut may be the ticket to reducing chemo's side effects
In a new study, scientists observed several simultaneous reactions in mice given a common chemotherapy drug: Their gut bacteria and tissue changed, their blood and brains showed signs of inflammation, and their behaviors suggested they were fatigued and cognitively impaired.
Nerve cell protection free from side effects
The hormone erythropoietin (Epo) is a well-known doping substance that has a history of abuse in endurance sports.
Proton therapy for cancer lowers risk of side effects
Proton therapy results in fewer side effects than traditional X-ray radiation therapy for many cancer patients, according to a new study led by Washington University School of Medicine in St.
What are the neurological side effects of CAR T-cell therapy?
A team at Brigham and Women's Hospital recently cataloged the neurological symptoms of patients who had received CAR T-cell therapy to better understand its neurotoxic side effects.
Using 3D models to reduce side effects of radiotherapy
The debilitating side effects of radiotherapy could soon be a thing of the past thanks to a breakthrough by University of South Australia (UniSA) and Harvard University researchers.
Side-effects not fully reported in more than 30 percent of healthcare reviews
The potential side-effects of health interventions were not fully reported in more than a third of published health study reviews, research at the University of York has shown.
How drugs can minimize the side effects of chemotherapy
Researchers at the University of Zurich have determined the three-dimensional structure of the receptor that causes nausea and vomiting as a result of cancer chemotherapy.
More Side Effects News and Side Effects Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.