Study maps landmarks of peripheral artery disease to guide treatment development

March 02, 2020

CHAMPAIGN, Ill. -- Novel biomedical advances that show promise in the lab often fall short in clinical trials. For researchers studying peripheral artery disease, this is made more difficult by a lack of standardized metrics for what recovery looks like. A new study from University of Illinois at Urbana-Champaign researchers identifies major landmarks of PAD recovery, creating signposts for researchers seeking to understand the disease and develop treatments.

"Having these landmarks could aid in more optimal approaches to treatment, identifying what kind of treatment could work best for an individual patient and when it would be most effective," said Illinois bioengineering professor Wawrzyniec L. Dobrucki, who led the study. He also is affiliated with the Carle Illinois College of Medicine.

PAD is a narrowing of the arteries in the limbs, most commonly the legs, so they don't receive enough blood flow. It often isn't diagnosed until walking becomes painful, when the disease is already fairly advanced. Diabetes, obesity, smoking and age increase the risk for PAD and can mask the symptoms, making PAD difficult to diagnose. Once diagnosed, there is no standard treatment, and doctors may struggle to find the right approach for a patient or to tell whether a patient is improving, Dobrucki said.

The researchers used multiple imaging methods to create a holistic picture of the changes in muscle tissue, blood vessels and gene expression through four stages of recovery after mice had the arteries in their legs surgically narrowed to mimic the narrowing found in PAD patients. They published their results in the journal Theranostics.

"There are a lot of people who study PAD, so there are all these potential new therapies, but we don't see them in the clinics," said postdoctoral researcher Jamila Hedhli, the first author of the paper. "So the main goal of this paper is utilizing these landmarks to standardize our practice as researchers. How can we see if the benefit of certain therapies is really comparable if we are not measuring the same thing?"

Dobrucki's group collaborated with bioengineering professor Michael Insana, chemistry professor Jefferson Chan and senior research scientist Iwona Dobrucka, the director of the Molecular Imaging Laboratory in the Beckman Institute for Advanced Science and Technology, to monitor the mice with a suite of imaging technologies that could be found in hospitals or clinics, including ultrasound, laser speckle contrast, photoacoustics, PET and more. Each method documented a different aspect of the mouse's response to the artery narrowing - anatomy, metabolism, muscle function, the formation of new blood vessels, oxygen perfusion and genetic activity.

By serially imaging the mice over time, the researchers identified key features and events over four phases of recovery.

"Each imaging method gives us a different aspect of the recovery of PAD that the other tools will not. So instead of looking at only one thing, now we're looking at a whole spectrum of the recovery," Hedhli said. "By looking at these landmarks, we're allowing scientists to use them as a tool to say 'At this point, I should see this happening, and if we add this kind of therapy, there should be an enhancement in recovery.'"

Though mice are an imperfect model for human PAD, each of the imaging platforms the researchers used can translate to human PAD patients, as well as to other diseases, Dobrucki said. Next, the researchers plan to map the landmarks of PAD in larger animals often used in preclinical studies, such as pigs, and ultimately in human patients.

"We are very interested in improving diagnosis and treatment," Hedhli said. "Many people are working to develop early diagnosis and treatment options for patients. Having standard landmarks for researchers to refer to can facilitate all of these findings, move them forward to clinic and, we hope, result in successful clinical trials."
The National Institutes of Health, the American Heart Association, and the Ministry of Science and Higher Education of Poland supported this work. Chan, Dobrucki, Hedhli and Insana also are affiliated with the Beckman Institute. Hedhli was supported by a Beckman-Brown Postdoctoral Fellowship.

Editor's note: To contact Wawrzyniec L. Dobrucki, call (217) 244-3938; email To contact Jamila Hedhli, email

The paper "Imaging the landmarks of vascular recovery" is available online. DOI: 10.7150/thno.36022

University of Illinois at Urbana-Champaign, News Bureau

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to