Nav: Home

Earliest look at newborns' visual cortex reveals the minds babies start with

March 02, 2020

Within hours of birth, a baby's gaze is drawn to faces. Now, brain scans of newborns reveal the neurobiology underlying this behavior, showing that as young as six days old a baby's brain appears hardwired for the specialized tasks of seeing faces and seeing places.

The Proceedings of the National Academy of Sciences (PNAS) published the findings by psychologists at Emory University. Their work provides the earliest peek yet into the visual cortex of newborns, using harmless functional magnetic resonance imaging (fMRI).

"We're investigating a fundamental question of where knowledge comes from by homing in on 'nature versus nature,'" says Daniel Dilks, associate professor of psychology, and senior author of the study. "What do we come into the world with and what do we gain by experience?"

"We've shown that a baby's brain is more adult-like than many people might assume," adds Frederik Kamps, who led the study as a PhD candidate at Emory. "Much of the scaffolding for the human visual cortex is already in place, along with the patterns of brain activity, although the patterns are not as strong compared to those of adults."

Kamps has since graduated from Emory and is now a post-doctoral fellow at MIT.

Understanding how an infant's brain is typically organized may help answer questions when something goes awry, Dilks says. "For example, if the face network in a newborn's visual cortex was not well-connected, that might be a biomarker for disorders associated with an aversion to eye contact. By diagnosing the problem earlier, we could intervene earlier and take advantage of the incredible malleability of the infant brain."

For decades, scientists have known that the adult visual cortex contains two regions that work in concert to process faces and another two regions that work together to process places. More recent work shows that the visual cortex of young children is differentiated into these face and place networks. And in a 2017 paper, Dilks and colleagues found that this neural differentiation is in place in babies as young as four months.

For the current PNAS paper, the average age of the newborn participants was 27 days. "We needed to get closer to the date of birth in order to better understand if we are born with this differentiation in our brains or if it's molded by experience," Dilks says.

His lab is a leader in adapting fMRI technology to make it baby friendly. The noninvasive technology uses a giant magnet to scan the body and record the magnetic properties in blood. It can measure heightened blood flow to a brain region, indicating that region is more active.

Thirty infants, ranging in age from six days to 57 days, participated in the experiments while sleeping. During scanning, they were wrapped in an inflatable "super swaddler," a papoose-like device that serves as a stabilizer while also making the baby feel secure.

"Getting fMRI data from a newborn is a new frontier in neuroimaging," Kamps says. "The scanner is like a giant camera and you need the participant's head to be still in order to get high quality images. A baby that is asleep is a baby that's willing to lie still."

To serve as controls, 24 adults were scanned in a resting state -- awake but not stimulated by anything in particular.

The scanner captured intrinsic fluctuations of the brain for both the infants and adults.

The results showed the two regions of the visual cortex associated with face processing fired in sync in the infants, as did the two networks associated with places. The infant patterns were similar to those of the adult participants, although not quite as strong. "That finding suggest that there is room for these networks to keep getting fine-tuned as infants mature into adulthood," Kamps says.

"We can see that the face networks and the place networks of the brain are hooked up and talking to each other within days of birth," Dilks says. "They are essentially awaiting the relevant information. The next questions to ask are how and when these two functions become fully developed."
-end-
Co-authors of the study include Cassandra Hendrix, an Emory graduate student, and Patricia Brennan, professor and chair of psychology at Emory.

The work was supported by Emory College, the National Eye Institute, the Emory HERCULES Center, the National Science Foundation, an Eleanor Munsterberg Koppitz Dissertation Fellowship and an NARSAD Young Investigator Award.

Emory Health Sciences

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.