NICHD-Funded Researchers Map Physical Basis Of Dyslexia

March 02, 1998

A Yale research team funded by the National Institute of Child Health and Human Development (NICHD) has used sophisticated brain imaging technology to show that there is decreased functioning while performing reading tasks in certain brain regions of individuals with the most common form of dyslexia. The study appears in the March 3 issue of the Proceedings of the National Academy of Sciences.

In their study, the researchers used a technology known as functional magnetic resonance imaging (fMRI), which produces computer-generated images of the brain while it is performing intellectual tasks. With fMRI, the team produced images of an impairment in the brains of dyslexic readers that became apparent when they tried to perform tasks which would require a firm command of the ability to decipher words phonetically.

"If you have a broken arm, we can see that on an X-ray," said the study's first author, Sally E. Shaywitz, MD, of the Yale University School of Medicine. "These brain activation patterns now provide us with hard evidence of a disruption in the brain regions responsible for reading--evidence for what has previously been a hidden disability."

Dr. Shaywitz explained that the words we speak are made up of individual sounds called phonemes. In spoken language, the brain automatically combines these sounds to form words. To make normal conversation possible, such sound pieces are strung together rapidly--about 8 to 10 per second--and blended so thoroughly that it's often impossible to separate them.

For people with dyslexia, the problem arises in converting this natural process to print. Written English is a kind of code: The 26 letters of the alphabet, either singly or in combination with other letters, stand for the 44 letter phonemes in spoken English. Dyslexic readers have extreme difficulty with phonological awareness (breaking spoken words into their component sounds) and with phonetics (the ability to match these letter sounds to the letters that represent them).

In their study, Dr. Shaywitz and her coworkers presented 29 dyslexic readers (14 men and 15 women, ages 16-54) and 32 normal readers (16 men and 16 women, ages 18-63) with a battery of reading tasks while observing their brain functioning with the fMRI scanner. Most of these tasks required the readers to manipulate and understand phonologic principals--the skills needed to consciously manipulate the letter sounds in words.

The dyslexic readers found it difficult to read nonsense rhyming words, such as "lete" and "jeat." This task is designed to measure the phonologic principals underlying reading and is far more difficult for dyslexic readers to complete than rhyming actual words, which they may have previously memorized.

When performing such tasks, the dyslexic readers in the study showed less activation in a brain region linking print skills to the brain's language areas, in comparison to normal readers. Specifically, dyslexic readers showed reduced activity in a large brain region that links the visual cortex and visual association areas (angular gyrus) to the language regions in the superior temporal gyrus (Wernike's area).

In the article, the authors noted that their findings are consistent with those of earlier studies of acquired inability to read (alexia). In both alexia and dyslexia, the same brain regions appear to be affected; however, in people with dyslexia, the study shows the impairment is a functional one, whereas in alexia, it has been attributed to a tumor or brain injury due to a stroke.

When they performed phonologic tasks, the dyslexic readers also showed activation in the brain region known as Broca's area, which has been associated with spoken language. In contrast, the normal readers did not show any increased activity in Broca's area when reading. Dr. Shaywitz explained that the dyslexic readers may have used this brain region in an attempt to compensate for impairments in the brain regions normally used for phonological skills.

"In summary, for dyslexic readers, these brain activation patterns provide evidence of an imperfectly functioning system for segmenting words into their phonologic constituents; accordingly, this disruption is evident when dyslexic readers are asked to respond to increasing demands on phonologic analysis," the authors wrote. "The pattern of relative underactivation in posterior brain regions contrasted with relative overactivation in the anterior regions may provide a neural signature for the phonologic difficulties characterizing dyslexia."

Dr. Shaywitz explained that it is too early to use fMRI as a method for diagnosing dyslexia. Nonetheless, the findings have important implications. First, they provide neurologic evidence for the critical role that lack of phonological awareness plays in dyslexia. They also confirm the fundamental neurobiologic nature of dyslexia and provide a neural signature for the phonologic difficulties accompanying the disorder.

NIH/Eunice Kennedy Shriver National Institute of Child Health and Human Development

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to