Mouse model of neuromuscular disease identifies key player in motor neuron death

March 03, 2004

Scientists have created a new mouse model for spinal and bulbar muscular atrophy (SBMA), a disease characterized by adult-onset progressive weakness and degeneration of limb muscles, often resulting in the patient being confined to a wheel chair. SBMA causes the death of cells called motor neurons that control muscle function. The study, published in the March 4 issue of Neuron, presents a clearer picture of the pathology underlying SBMA and associated diseases and even points to a possible therapeutic strategy for this debilitating condition and for more common motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), that currently have no proven treatments.

SBMA belongs to a group of neurodegenerative disorders, called polyglutamine diseases, that includes Huntington's disease and spinocerebellar ataxias. Polyglutamine diseases are thought to arise because of a mutant protein that is misfolded and subsequently clumps together to form toxic aggregates that destroy cell function and cause disease. In SBMA, a mutated gene directs production of androgen receptors with an abnormal number of consecutive residues of the amino acid glutamine. Dr. Albert R. La Spada and colleagues from the University of Washington Medical Center in Seattle created transgenic mice containing the human androgen receptor carrying 100 glutamine repeats. The mice developed a gradually progressive limb weakness around mid-adulthood that was accompanied by motor neuron degeneration, strikingly similar to what is seen in human SBMA patients. The researchers determined that the abnormal androgen receptor interfered with production of a molecule called vascular endothelial growth factor (VEGF) that is important for the general health and survival of motor neurons. Interestingly, VEGF could rescue SBMA-like motor neurons grown in the laboratory.

The researchers conclude that VEGF may play a pivotal role in motor neuron degeneration. "Our findings in SBMA suggest that activation of the VEGF pathway may be one way that the motor neuron protects itself from harmful insults and stresses. Studies of ALS (amyotrophic lateral sclerosis) also point to the VEGF axis as critical for motor neuron health, so it is distinctly possible that all motor neuron diseases share interruption of the VEGF axis as part of their pathogenesis," explains Dr. La Spada. "If this is true, then it would have dramatic implications for treatment of motor neuron diseases."

Bryce L. Sopher, Patrick S. Thomas, Jr., Michelle A. LaFevre-Bernt, Ida E. Holm, Scott A. Wilke, Carol B. Ware, Lee-Way Jin, Randell T. Libby, Lisa M. Ellerby, and Albert R. La Spada: "Androgen Receptor YAC Transgenic Mice Recapitulate SBMA Motor Neuronopathy and Implicate VEGF164 in the Motor Neuron Degeneration"
-end-
Published in Neuron, Volume 41, Number 5, 4 March 2004, pages 687-699.

Cell Press

Related Amyotrophic Lateral Sclerosis Articles from Brightsurf:

Converting lateral scanning into axial focusing to speed up 3D microscopy
In optical microscopy, high-speed volumetric imaging is limited by either the slow axial scanning rate or aberrations introduced by the z-scanning mechanism.

Ammonium triggers formation of lateral roots
Despite the importance of changes in root architecture to exploit local nutrient patches, mechanisms integrating external nutrient signals into the root developmental program remain poorly understood.

'Reelin' in a new treatment for multiple sclerosis
In an animal model of multiple sclerosis (MS), decreasing the amount of a protein made in the liver significantly protected against development of the disease's characteristic symptoms and promoted recovery in symptomatic animals, UTSW scientists report.

Adjustable lordotic expandable vs static lateral lumbar interbody fusion devices
The objective of this study is to compare the clinical and radiographic outcomes between patients treated with static and expandable interbody spacers with adjustable lordosis for MIS LLIF.

Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation
Chiral nanoparticles which twist the light were theoretically predicted to experience lateral forces perpendicular to light vector but lacks experimental verification.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

Researchers delay onset of amyotrophic lateral sclerosis (ALS) in laboratory models
Scientists have delayed the onset of amyotrophic lateral sclerosis (ALS) in laboratory models, leaving them cautiously optimistic that the result, combined with other clinical advances, points to a potential treatment for ALS in humans.

Emerging role of adenosine in brain disorders and amyotrophic lateral sclerosis
The role of adenosine in neurodegeneration and neuroregeneration has led to growing attention on adenosine receptors as potential drug targets in a range of brain disorders, including neuroregenerative therapy and treatment for amyotrophyic lateral sclerosis (ALS).

New clues about the origins of familial forms of Amyotrophic lateral sclerosis
A Brazilian study made important progress in understanding the accumulation of one of the proteins involved in amyotrophic lateral sclerosis (ALS).

Recrutement of a lateral root developmental pathway into root nodule formation of legumes
Peas and other legumes develop spherical or cylindrical structures -- called nodules -- in their roots to establish a mutually beneficial relationship with bacteria that convert atmospheric nitrogen into a useable nutrient for the legume plant.

Read More: Amyotrophic Lateral Sclerosis News and Amyotrophic Lateral Sclerosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.