Study gives lowdown on high-temperature superconductivity

March 03, 2004

A new study by theoretical physicists at the University of Toronto and the University of California at Los Angeles (ULCA) could bring scientists one step closer to the dream of a superconductor that functions at room temperature, rather than the frigid temperatures more commonly found in deep space.

The findings, which appear in the March 4 issue of the journal Nature, identify three factors that explain a perplexing pattern in the temperatures at which multi-layered ceramic materials become superconductors. The study could advance research in medical imaging, electrical power transmission and magnetically levitating trains. Its authors are U of T physics professor Hae-Young Kee and post-doctoral fellow Klaus Völker, and Professor Sudip Chakravarty of UCLA's physics and astronomy department.

Superconductivity is a phenomenon that occurs when certain metals are cooled to near absolute zero, a temperature equivalent to zero degrees Kelvin (K), -273 C or -459 F. In ceramic materials, the phenomenon appears at about 100K. At a so-called critical temperature--that varies depending on the number of layers within the ceramic substance--the material becomes capable of conducting electricity without any energy loss.

Despite the value of such an efficient system, the supercooling--usually done with liquid nitrogen or liquid helium--makes superconductors impractical for many applications. "A room temperature superconductor would be a revolution, but even a superconductor with a higher critical temperature would have extremely important implications for multiple industries," says Kee, who holds the Canada Research Chair in Theoretical Condensed Matter Physics.

Materials scientists have developed a group of "high-temperature" superconductors made with layers of copper oxides sandwiched between insulating filler material. This material reaches critical temperatures in the range of roughly 130K--the highest know critical temperatures to date. Previous studies on superconductors have established that while the critical temperature rises as the number of layers increase from one to three, it then drops off. By the time the number of layers rises to seven, the critical temperature has fallen below that of the single-layer superconductor.

Scientists have previously suggested that the critical temperature increase between one- and three-layered materials is due to the ability of electron pairs to tunnel between the layers of superconducting material.

Now, Kee and her colleagues have identified the factors that combine with a mechanism--known as the competing order--that lowers a superconductor's critical temperature in materials with more than three layers. That "competing order," in turn, is dependent on an uneven distribution of electrons, resulting in a charge imbalance between the material's multiple layers. Kee and her colleagues are the first group to put these three factors--the tunnelling, the competing order and the charge imbalance--together.

"If we can find a way to affect the charge imbalance, we could suppress the competing order and develop superconducting materials with higher and higher critical temperatures," says Kee. "And if you can push the superconducting temperature higher, then it will become much cheaper to apply this technology."
-end-
The research was funded by the U.S. National Science Foundation, the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute of Advanced Research, the Canada Research Chairs program and the Alfred P. Sloan Foundation.

CONTACT:

Klaus Völker
Department of Physics
416-333-5633 (cell)
voelker@physics.utoronto.ca

Hae-Young Kee (available March 4)
Department of Physics
416-978-5196
hykee@physics.utoronto.ca

Nicolle Wahl
U of T Public Affairs
416-978-6974
nicolle.wahl@utoronto.ca

University of Toronto

Related Superconductors Articles from Brightsurf:

Progress in electronic structure and topology in nickelates superconductors
Recently, superconductivity was discovered in the hole-doped nickelates, wh ich provide us a new platform to study the mechanism of high-temperature superconductivity.

UCF researcher zeroes in on critical point for improving superconductors
Developing a practical ''room temperature'' superconductor is a feat science has yet to achieve.

Connecting two classes of unconventional superconductors
The understanding of unconventional superconductivity is one of the most challenging and fascinating tasks of solid-state physics.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

New advance in superconductors with 'twist' in rhombohedral graphite
An international research team led by The University of Manchester has revealed a nanomaterial that mirrors the 'magic angle' effect originally found in a complex man-made structure known as twisted bilayer graphene -- a key area of study in physics in recent years.

A new way towards super-fast motion of vortices in superconductors discovered
An international team of scientists from Austria, Germany and Ukraine has found a new superconducting system in which magnetic flux quanta can move at velocities of 10-15 km/s.

Controlling superconductors with light
IBS scientists has reported a conceptually new method to study the properties of superconductors using optical tools.

Superconductors with 'zeitgeist' -- When materials differentiate between past and future
Physicists at TU Dresden have discovered spontaneous static magnetic fields with broken time-reversal symmetry in a class of iron-based superconductors.

Hydrogen blamed for interfering with nickelate superconductors synthesis
Prof. ZHONG Zhicheng's team at the Ningbo Institute of Materials Technology and Engineering has investigated the electronic structure of the recently discovered nickelate superconductors NdNiO2. They successfully explained the experimental difficulties in synthesizing superconducting nickelates, in cooperation with Prof.

A closer look at superconductors
From sustainable energy to quantum computers: high-temperature superconductors have the potential to revolutionize today's technologies.

Read More: Superconductors News and Superconductors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.