Synthesis and characterization of a new class of metal nitrides

March 03, 2006

New research shows that a novel class of nitrides made from "noble" metals can be synthesized under extreme conditions and are likely to have unusual or even unique properties that would be useful in semiconductor, superconductor and corrosion-resistant devices.

Historically, transition metal nitrides are fundamentally and technologically important because of their strength and durability, and are useful for their optical, electronic and magnetic properties. ("Nitride" is the name given to a nitrogen-containing compound in which nitrogen more strongly attracts the relevant electrons in the chemical bond.)

Using a diamond anvil cell to create high pressures and a laser to create high temperatures, scientists from Lawrence Livermore National Laboratory, in collaboration with researchers from the Carnegie Institution of Washington and the Atomic Weapons Establishment in England, created the first bulk nitride of the noble metal iridium. Noble metals are those that do not form compounds with other elements very easily. By combining experimental results with first-principle theoretical modeling, the scientists also have determined the structure of the known nitride of platinum as well as its bulk modulus (a measure of the material hardness). The results could prove useful to the semiconductor industry by making them more durable and reliable.

"This work extends the scientific understanding of platinum and iridium nitrides," said lead author Jonathan Crowhurst of Livermore's Chemistry and Materials Science Directorate. "Demonstrating that these compounds exist and determining at least some of their physical properties should inspire the development of large-scale synthesis techniques to take advantage of their unusual properties.

Platinum nitride, for example, has been shown to have a very high bulk modulus comparable to that of cubic boron nitride - a known super-hard material."

The semiconductor industry currently uses titanium nitrides because of their strength and durability. The new nitrides may prove to be even more durable than titanium.

For platinum nitrides, synthesis conditions began at approximately 50 GPa (or 500,000 atmospheres of pressure) and 2,000 degrees Kelvin. Iridium nitrides were similar and would not occur below 47 GPa and 1,600 degrees Kelvin.

Further research is necessary to find a way to produce the nitrides industrially
-end-
Other Livermore authors include Babak Sadigh, Cheryl Evans, James Ferreira and Art Nelson. The research titled, "Synthesis and Characterization of the Nitrides of Platinum and Iridium," appears in the March 3 edition of the journal Science.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.

Laboratory news releases and photos are also available at http://www.llnl.gov/PAO and on UC Newswire.

DOE/Lawrence Livermore National Laboratory

Related Semiconductor Articles from Brightsurf:

Blue phosphorus: How a semiconductor becomes a metal
Blue phosphorus, an atomically thin synthetic semiconductor, becomes metallic as soon as it is converted into a double layer.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Medical robotic hand? Rubbery semiconductor makes it possible
A medical robotic hand could allow doctors to more accurately diagnose and treat people from halfway around the world, but currently available technologies aren't good enough to match the in-person experience.

Laser allows solid-state refrigeration of a semiconductor material
A team from the University of Washington used an infrared laser to cool a solid semiconductor by at least 20 degrees C, or 36 F, below room temperature, as they report in a paper published June 23 in Nature Communications.

Scientists create smallest semiconductor laser
An international team of researchers announced the development of the world's most compact semiconductor laser that works in the visible range at room temperature.

Clemson researcher's novel MOF is potential next-gen semiconductor
Clemson professor Sourav Saha demonstrated a novel double-helical metal organic framework architecture in a partially oxidized form that conducts electricity, potentially making it a next-generation semiconductor.

A gold butterfly can make its own semiconductor skin
A nanoscale gold butterfly provides a more precise route for growing/synthesizing nanosized semiconductors that can be used in nano-lasers and other applications.

Scientists pioneer new generation of semiconductor neutron detector
In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.

Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.

Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.

Read More: Semiconductor News and Semiconductor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.