Researchers discover how to shutdown cancer's powerful master protein

March 03, 2013

NEW YORK (March 3, 2013) -- The powerful master regulatory transcription factor called Bcl6 is key to the survival of a majority of aggressive lymphomas, which arise from the B-cells of the immune system. The protein has long been considered too complex to target with a drug since it is also crucial to the healthy functioning of many immune cells in the body, not just B cells gone bad.

But now, in the journal Nature Immunology, researchers at Weill Cornell Medical College report that it is possible to shut down Bcl6 in the cancer, known as diffuse large B-cell lymphoma (DLBCL), while not affecting its vital function in T cells and macrophages that are needed to support a healthy immune system.

"The finding comes as a very welcome surprise," says the study's lead investigator, Dr. Ari Melnick, Gebroe Family Professor of Hematology/Oncology and director of the Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell.

"This means the drugs we have developed against Bcl6 are more likely to be significantly less toxic and safer for patients with this cancer than we realized," says Dr. Melnick, who is also a hematologist-oncologist at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

If Bcl6 is completely inhibited, patients might suffer from systemic inflammation and atherosclerosis. Weill Cornell researchers conducted this new study to help clarify possible risks, as well as to understand how Bcl6 controls the various aspects of the immune system.

DLBCL is the most common subtype of non-Hodgkin lymphoma -- the seventh most frequently diagnosed cancer -- and many of these patients are resistant to currently available treatments.

"Scientists have been searching for the right answer to treat this difficult lymphoma, which, after initial treatment, can be at high risk of relapse and resistant to current therapies," Dr. Melnick says. "Believing that Bcl6 could not be targeted, some researchers have been testing alternative therapeutic approaches. This study strongly supports the notion of using Bcl6-targeting drugs."

In fact, the findings in this study were inspired from preclinical testing of two Bcl6-targeting agents that Dr. Melnick and his Weill Cornell colleagues have developed to treat DLBCLs. These experimental drugs are RI-BPI, a peptide mimic, and the small molecule agent 79-6.

Dr. Melnick says the discovery that a master regulatory transcription factor can be targeted offers implications beyond just treating DLBCL. Recent studies from Dr. Melnick and others have revealed that Bcl6 plays a key role in the most aggressive forms of acute leukemia, as well as certain solid tumors.

Transcription factors are responsible for either inhibiting or promoting the expression of genes, and master regulatory transcription factors are the equivalent of the CPU of a computer - their actions regulate thousands of genes in different kinds of cells. For example, Bcl6 can control the type of immune cell that develops in the bone marrow -- playing many roles in the development of B cells, T cells, macrophages and other cells -- including a primary and essential role in enabling B-cells to generate specific antibodies against pathogens.

"When cells lose control of Bcl6, lymphomas develop in the immune system. Lymphomas are 'addicted' to Bcl6, and therefore Bcl6 inhibitors powerfully and quickly destroy lymphoma cells," Dr. Melnick says.

The big surprise in the current study is that rather than functioning as a single molecular machine, Bcl6 instead seems to function more like a Swiss Army knife, using different tools to control different cell types. This multi-function paradigm could represent a general model for the functioning of other master regulatory transcription factors.

"In this analogy, the Swiss Army knife, or transcription factor, keeps most of its tools folded, opening only the one it needs in any given cell type," Dr. Melnick says. "For B cells, it might open and use the knife tool; for T cells, the cork screw; for macrophages, the scissors. The amazing thing from a medical standpoint is that this means that you only need to prevent the master regulator from using certain tools to treat cancer. You don't need to eliminate the whole knife," he says. "In fact, we show that taking out the whole knife is harmful since the transcription factor has many other vital functions that other cells in the body need."

Prior to these study results, it was not known that a master regulator could separate its functions so precisely.

"Now we know we can take out a specific tool -- to shut down a specific part of the protein -- that causes the disease we want to treat."

Researchers hope this will be a major benefit to the treatment of DLBCL and perhaps other disorders that are influenced by Bcl6 and other master regulatory transcription factors.
-end-
Study co-authors include Dr. Chuanxin Huang and Dr. Katerina Chatzi from the Division of Hematology and Oncology at Weil Cornell Medical College.

The research was funded by grants from the National Cancer Institute, The Burroughs Wellcome Foundation and the Chemotherapy Foundation. The research was initially supported by a March of Dimes Scholar Award and facilitated by the Sackler Center for Biomedical and Physical Sciences at Weill Cornell.

The Raymond and Beverly Sackler Center for Biomedical and Physical Sciences

The Raymond and Beverly Sackler Center for Biomedical and Physical Sciences of Weill Cornell Medical College brings together a multidisciplinary team of scientists for the purpose of catalyzing major advances in medicine. By harnessing the combined power of experimental approaches rooted in the physical and biological sciences, Sackler Center investigators can best accelerate the pace of discovery and translate these findings for the benefit of patients with various medical conditions, including but not limited to cancer.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit weill.cornell.edu.

Weill Cornell Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.