Neural connectivity dictates altruistic behavior

March 03, 2016

A new study suggests that the specific alignment of neural networks in the brain dictates whether a person's altruism was motivated by selfish or altruistic behavior. In psychology, motives are considered to be drivers of human behavior but can be difficult to discern; simply observing a person's actions is not sufficient to do so. A person may behave altruistically, for example, because they are moved by someone's sufferings (empathy), or they may behave altruistically because they feel obliged to return a favor (reciprocity). Some researchers have suggested that identifying neural networks in the brain associated with certain motives could provide an intriguing window into why a person behaves a certain way. Therefore, Grit Hein and colleagues sought to identify structural differences in the brains of people under two different motive scenarios. They designed an experiment where a participant interacted with two partners. In one experimental group, a participant observed a partner receiving painful shocks, thereby eliciting an empathic response in the participant (empathy group). In the other group, a participant observed partner sacrificing money to save the participant from receiving a shock, thereby eliciting a desire in the participant to return the kind behavior (reciprocity group). In both groups, the participant was also paired with a second partner who served as a control and did nothing for them. Following this part of the experiment, all participants conducted a money allocation task. As expected, participants sacrificed more money to the empathy or reciprocity partner than to the control partner. Critically, the altruism did not differ between the groups, so that the hidden motive of the participant could not be accurately inferred from behavior alone. The researchers studied the participants' brain structures, however, finding distinct patterns. Using a classification algorithm, individual patterns of brain connectivity could be used to detect the specific motive - empathy or reciprocity - for altruism. For example, empathy-driven altruism showed slightly negative connectivity between the anterior insula (AI) and ventral striatum (VS), while reciprocity-driven altruism showed strong positive connectivity between these regions. The volunteers were then partitioned into two groups depending on their level of altruism. "Selfish" individuals could be characterized by low or negative connectivity between the anterior cingulate cortex and AI, whereas predominantly prosocial individuals displayed positive connectivity between these regions. Inducing empathy-driven altruism in the selfish group resulted in connectivity more similar to the prosocial individuals. A Perspective by Sebastian Gluth and Laura Fontanesi provides more context.
-end-


American Association for the Advancement of Science

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.